Math, asked by Itslovelyvishi, 9 days ago

The numerator of a fraction in 7 less than the denominator. If the denominator is increased by 9 and the numerator by 2, the fraction is not changed. Find the fraction.​

Attachments:

Answers

Answered by XxitzkaranXx99
3

me izz fine

nhi aa rhi neend

pta nhi kha laapta ho gyi hai?

Step-by-step explanation:

Engineering management is a career that brings together the technological problem-solving ability of engineering and the organizational, administrative, and planning abilities of management in order to oversee the operational performance of complex engineering driven enterprises.

Answered by ChangesOfMyLife
4

Hii Xdxdxdxdxdxd

Solution

Verified by Toppr

Verified by TopprCorrect option is

Verified by TopprCorrect option isC

Verified by TopprCorrect option isC3326

Verified by TopprCorrect option isC3326Let the numerator be x and

Verified by TopprCorrect option isC3326Let the numerator be x andthe denominator be y

Verified by TopprCorrect option isC3326Let the numerator be x andthe denominator be yGiven that numerator of a fraction is 7 less than its denominator

Verified by TopprCorrect option isC3326Let the numerator be x andthe denominator be yGiven that numerator of a fraction is 7 less than its denominatorTherefore, x+7=y ------(1)

Verified by TopprCorrect option isC3326Let the numerator be x andthe denominator be yGiven that numerator of a fraction is 7 less than its denominatorTherefore, x+7=y ------(1)Given that if the denominator increased by 9 and the numerator by 2 then the fraction is 32

Verified by TopprCorrect option isC3326Let the numerator be x andthe denominator be yGiven that numerator of a fraction is 7 less than its denominatorTherefore, x+7=y ------(1)Given that if the denominator increased by 9 and the numerator by 2 then the fraction is 32Therefore, y+9x+2=32

Verified by TopprCorrect option isC3326Let the numerator be x andthe denominator be yGiven that numerator of a fraction is 7 less than its denominatorTherefore, x+7=y ------(1)Given that if the denominator increased by 9 and the numerator by 2 then the fraction is 32Therefore, y+9x+2=32⟹3x+6=2y+18

Verified by TopprCorrect option isC3326Let the numerator be x andthe denominator be yGiven that numerator of a fraction is 7 less than its denominatorTherefore, x+7=y ------(1)Given that if the denominator increased by 9 and the numerator by 2 then the fraction is 32Therefore, y+9x+2=32⟹3x+6=2y+18⟹3x−2y=12

Verified by TopprCorrect option isC3326Let the numerator be x andthe denominator be yGiven that numerator of a fraction is 7 less than its denominatorTherefore, x+7=y ------(1)Given that if the denominator increased by 9 and the numerator by 2 then the fraction is 32Therefore, y+9x+2=32⟹3x+6=2y+18⟹3x−2y=12⟹3x−2(x+7)=12

Verified by TopprCorrect option isC3326Let the numerator be x andthe denominator be yGiven that numerator of a fraction is 7 less than its denominatorTherefore, x+7=y ------(1)Given that if the denominator increased by 9 and the numerator by 2 then the fraction is 32Therefore, y+9x+2=32⟹3x+6=2y+18⟹3x−2y=12⟹3x−2(x+7)=12⟹x−14=12

Verified by TopprCorrect option isC3326Let the numerator be x andthe denominator be yGiven that numerator of a fraction is 7 less than its denominatorTherefore, x+7=y ------(1)Given that if the denominator increased by 9 and the numerator by 2 then the fraction is 32Therefore, y+9x+2=32⟹3x+6=2y+18⟹3x−2y=12⟹3x−2(x+7)=12⟹x−14=12⟹x=26

Verified by TopprCorrect option isC3326Let the numerator be x andthe denominator be yGiven that numerator of a fraction is 7 less than its denominatorTherefore, x+7=y ------(1)Given that if the denominator increased by 9 and the numerator by 2 then the fraction is 32Therefore, y+9x+2=32⟹3x+6=2y+18⟹3x−2y=12⟹3x−2(x+7)=12⟹x−14=12⟹x=26⟹y=26+7=33 (from (1))

Verified by TopprCorrect option isC3326Let the numerator be x andthe denominator be yGiven that numerator of a fraction is 7 less than its denominatorTherefore, x+7=y ------(1)Given that if the denominator increased by 9 and the numerator by 2 then the fraction is 32Therefore, y+9x+2=32⟹3x+6=2y+18⟹3x−2y=12⟹3x−2(x+7)=12⟹x−14=12⟹x=26⟹y=26+7=33 (from (1))Therefore, the fraction is 3326

Similar questions