Math, asked by mktjaiaswath1, 8 months ago

The numerator of a fraction is 1 less than the denominator. If 3 is added to each of the

numerator and denominator, the fraction is increased by 3/28. Find the fraction.

Answers

Answered by BrainlyPopularman
7

GIVEN :

The numerator of a fraction is 1 less than the denominator.

• If 3 is added to each of the numerator and denominator, the fraction is increased by 3/28.

TO FIND :

Original fraction = ?

SOLUTION :

Let the denominator of fraction = x

• Then Numerator = (x - 1)

  \\ \implies \sf Fraction =  \dfrac{x - 1}{x} \\

▪︎ According to the question –

  \\ \implies \sf  \dfrac{x - 1 + 3}{x + 3}  =\dfrac{x - 1}{x} +  \dfrac{3}{28} \\

  \\ \implies \sf  \dfrac{x + 2}{x + 3}  =\dfrac{x - 1}{x} +  \dfrac{3}{28} \\

  \\ \implies \sf  \dfrac{x + 2}{x + 3}  =\dfrac{28(x - 1) + 3x}{28x} \\

  \\ \implies \sf  \dfrac{x + 2}{x + 3}  =\dfrac{28x - 28 + 3x}{28x} \\

  \\ \implies \sf  \dfrac{x + 2}{x + 3}  =\dfrac{ 31x - 28}{28x} \\

  \\ \implies \sf (x + 2)(28x) = (x + 3)(31x - 28) \\

  \\ \implies \sf 28 {x}^{2} + 56x= 31 {x}^{2} - 28x + 93x  - 84 \\

  \\ \implies \sf  - 3{x}^{2}  - 9x + 84 = 0\\

  \\ \implies \sf  {x}^{2}   + 3x  - 28 = 0\\

  \\ \implies \sf  {x}^{2}   + 7x  - 4x - 28 = 0\\

  \\ \implies \sf  x(x + 7)  - 4(x + 7) = 0\\

  \\ \implies \sf  (x - 4)(x + 7)= 0\\

  \\ \implies \sf x = 4 \: , \:  - 7\\

• So that , Original fraction  { \bold{ \: \: \dfrac{3}{4}  \:  \: or \:  \:  \dfrac{ - 8}{ - 7} (rejected)}} \\

Hence , Original fraction =  \: \sf \dfrac{3}{4}

Answered by Anonymous
15

 ~~~ \: Let \: the \: numerator \: be \: \red{x}. \\~~~   \:The \: dinomintor = \red{x + 1}. \\~~~   \:  Fraction =  \red{\frac{x}{x + 1}}.

Now, Given that:-

 \frac{(x) + 3}{(x + 1) + 3}  =  \frac{x }{x + 1} +   \frac{3}{28}   \\\\  ↣\frac{x + 3}{x + 4}  = \frac{x }{x + 1} + \frac{3}{28} \\\\ ↣   \frac{x + 3}{x + 4}   - \frac{x }{x + 1} =  \frac{3}{28} \\\\ ↣ \frac{(x + 3)(x + 1) - x(x + 4)}{(x  + 4)(x + 1)}  =  \frac{3}{28} \\\\ ↣ \frac{ {x}^{2} + x + 3x + 3 -  {x}^{2}  - 4x }{ {x}^{2} + x + 4x + 4 }  =  \frac{3}{28} \\\\↣  \frac{3}{ {x}^{2} + 5x + 4 }  =  \frac{3}{28} \\\\ ↣ {x}^{2}  + 5x + 4 = 28 \\\\ ↣{x}^{2}  + 5x + 4 - 28 = 0 \\\\↣  {x}^{2}  + 5x - 24 = 0 \\\\  ↣{x}^{2}  + 8x - 3x - 24 = 0 \\\\ ↣x(x + 8) - 3(x + 8) = 0 \\\\↣ (x - 3)(x + 8) = 0 \\\\ ↣x = 3 \: or \: x =  - 8

The fraction  (\frac{x}{x + 1})= \red{\frac{3}{4}}\\  or  \red{\frac{8}{7}}\\ .

Similar questions