Math, asked by vedanth2462, 8 months ago

The numerator of a fraction is 2 less than its denominator. If 3 is subtracted from numerator and from the denominator, the new fraction obtained is 3/4. Find fraction

Answers

Answered by ButterFliee
17

\Large{\underline{\underline{\bf{GIVEN:-}}}}

  • The numerator of a fraction is 2 less than its denominator.
  • If 3 is subtracted from numerator and from the denominator, the new fraction obtained is 3/4.

\Large{\underline{\underline{\bf{TO \: FIND:-}}}}

  • What is the fraction ?

\Large{\underline{\underline{\bf{SOLUTION:-}}}}

Let the numerator of the fraction be 'x' and Denominator be 'y'

  • FRACTION = x/y

CASE:- 1)

◆ The numerator of a fraction is 2 less than its denominator.

According to question:-

x = y –2....

CASE:- 2)

If 3 is subtracted from numerator and from the denominator, the new fraction obtained is 3/4.

According to question:-

\sf{\dfrac{x -3}{y-3} = \dfrac{3}{4}}

Use cross product

4(x–3) = 3(y–3)

➜ 4x –12 = 3y –9

➜ 4x –3y = –9+12

4x –3y = 3....❷ 

Put the value of 'x' from equation 1) in equation 2)

4(y–2) –3y = 3

➜ 4y –8 –3y = 3

➜ y = 3+8

⠀⠀⠀⠀  ❛ y = 11 ❜

Put the value of 'y' in equation 1)

x = 11 2

⠀⠀⠀⠀  ❛ x = 9 ❜

  • NUMERATOR = x = 9
  • DENOMINATOR = y = 11
  • FRACTION = 9/11

Hence, the fraction formed is 9/11

__________________

Answered by Anonymous
18

QUESTION:-

✯ᴛʜᴇ ɴᴜᴍᴇʀᴀᴛᴏʀ ᴏғ ᴀ ғʀᴀᴄᴛɪᴏɴ ɪs 2 ʟᴇss ᴛʜᴀɴ ɪᴛs ᴅᴇɴᴏᴍɪɴᴀᴛᴏʀ. ɪғ 3 ɪs sᴜʙᴛʀᴀᴄᴛᴇᴅ ғʀᴏᴍ ɴᴜᴍᴇʀᴀᴛᴏʀ ᴀɴᴅ ғʀᴏᴍ ᴛʜᴇ ᴅᴇɴᴏᴍɪɴᴀᴛᴏʀ, ᴛʜᴇ ɴᴇᴡ ғʀᴀᴄᴛɪᴏɴ ᴏʙᴛᴀɪɴᴇᴅ ɪs 3/4. ғɪɴᴅ ғʀᴀᴄᴛɪᴏɴ

ANSWER

\Large\underline\bold{GIVEN,}

 \sf\dashrightarrow  numerator\:is\:less\:than\:the\:denominator\:by\:2

 \sf\dashrightarrow  the\:new\:fraction\:obtained\:is\: \dfrac{3}{4}\:when\:3\:is\: subtracted\:from\:numerator\:and\:denominator

\Large\underline\bold{TO\:FIND,}

 \sf\large\dashrightarrow THE\:FRACTION

\Large\underline\bold{SOLUTION,}

 \sf\therefore let\:the\:numerator\:be\:'a'\:and\:denominator\:be\:'b'

 \sf\therefore \dfrac{numerator}{denominator} = \dfrac{a}{b}

 \sf\therefore taking\:two\:cases,

 \sf\therefore in\:case1\:we\:will\:find\:the\:value\:for\: substituting\:in\:equations\:

 \sf\therefore in\:case2\:we\:will\:find\:the\:value\:of\:numerators\:and\:denominators\:with\:the\:help\:of\:1_{st}case

\Large {\fbox { CASE:-1}}

 \sf\therefore  numerator\:is\:less\:than\:the\:denominator\:by\:2

ACCORDING TO THE QUESTION,

 \sf\therefore a=b-2.......eq^1

\sf{\boxed{\sf{a=b-2}}}

\Large {\fbox { CASE:-2}}

 \sf\dashrightarrow  the\:new\:fraction\:obtained\:is\: \dfrac{3}{4}\:when\:3\:is\:subtracted\:from\:numerator\:and\:denominator

THEREFORE,

ACCORDING TO THE QUESTION,

 \sf\therefore \dfrac{a -3}{b-3} = \dfrac{3}{4}

 \sf\implies \dfrac{a -3}{b-3} = \dfrac{3}{4}

 \sf\implies 4(a-3) = 3(b-3)

 \sf\implies 4a -12 = 3b -9

 \sf\implies 4a -3b = (-9)+12

 \sf\implies 4a -3b = 3......eq^2

\sf{\boxed{\sf{4a -3b = 3......eq^2}}}

 \sf\large\therefore substituting\:the\:value\:of\:'a'\:in\:eq^2

 \sf\therefore  a=b-2

 \sf\implies  4(b-2) -3b = 3

 \sf\implies  4b -8 -3b = 3

 \sf\implies 4b-3b=3+8

 \sf\implies b=11

\large{\boxed{\sf{b=11}}}

NOW,

 \sf\therefore substituting\:the\:value\:of\:b\:in\:eq^1

 \sf\therefore  a=b-2

 \sf\implies a=11-2

 \sf\therefore a=9

\large{\boxed{\sf{a=9}}}

 \sf\large\therefore the\:required\:fraction\:is,

 \sf\large\therefore \dfrac{numerator}{debominator} = \dfrac{a}{b} = \dfrac{9}{11}

______________________________

Similar questions