Math, asked by Sonal7975, 11 months ago

The numerator of a fraction is 2 less than the denominator. If 3 is added to both the numerator
and the denominator, the fraction becomes ¾. Find the fraction.

Answers

Answered by mddilshad11ab
73

\huge{\underline{\purple{\rm{Solution:}}}}

\large{\underline{\red{\rm{Let:}}}}

  • \sf{The\: numerator\:be:R}
  • \sf{The\: denominator\:be:S}

\large{\underline{\red{\rm{To\: Find:}}}}

  • \sf{The\: fraction\:=?}

\small{\underline{\purple{\rm{As\:per\:the\: given\: Question:}}}}

\sf{The\:N\:is\:2\:less\:than\: it's\:D}

\rm{\implies R=S-2}

\rm\green{\implies R=S-2-----(1)}

\sf{If\:3\:is\:added\:to\:both\:N\:and\:D\:the\: fraction\: become\:\frac{3}{4}}

\rm{\implies \dfrac{R+3}{S+3}=\dfrac{3}{4}}

\rm{\implies 4(R+3)=3(S+3)}

\rm{\implies 4R+12=3S+9}

\rm{\implies 4R-3S=9-12}

\rm\green{\implies 4R-3S=-3-----(2)}

  • \sf{putting\:the\: value\:of\:S\:in\:eq\:2}

\rm{\implies 4R-3S=-3}

\rm{\implies 4(S-2)-3S=-3}

\rm{\implies 4S-8-3S=-3}

\rm{\implies 4S-3S=-3+8}

\rm\red{\implies S=5}

  • \sf{putting\:the\: value\:of\:S\:in\:eq\:1}

\rm{\implies R=S-2}

\rm{\implies R=5-2}

\rm\red{\implies R=3}

Hence,

\rm\green{\implies Required_{fraction}=\dfrac{R}{S}=\dfrac{3}{5}}

Answered by BloomingBud
30

Given:

The numerator of the fraction is 2 less than the denominator.

To be found:

The fraction.

Solution:

Let the denominator be x

Now according to the question

Numerator = 2 less than the denominator

Numerator = (x - 2)

The fraction becomes =  \bf \frac{(x-2)}{x}.

Also, If we add 3 to both the numerator and denominator than the fraction becomes = \bf \frac{3}{4}.

So,

\rightarrow \bf \frac{(x-2)+3}{x+3}=\frac{3}{4} }

\rightarrow \bf \frac{x+1}{x+3}=\frac{3}{4}

\rightarrow \bf 3(x+3)=4(x+1)

\therefore \tt{cross\:\:multiplication}

\rightarrow \bf 3x+9=4x+4

\rightarrow \bf 9-4=4x-3x

\therefore \tt Taking\:\: 4 \:\:to \:\: LHS \:\:side\:\:and \:\:3x \:\:to\:\:RHS\:\;side

\rightarrow \boxed{\boxed{\bf 5=x}}

We got the denominator = x = 5

So, the numerator = 2 less than the denominator = (x - 2) = (5 - 2) = 3

Therefore,

\boxed{\boxed{\bf Required \:\:fraction= \frac{3}{5}}}

Verification

\tt adding \:\:3\:\: to\:\: both\:\:numerator\:\:and\:\:denominator

= \bf \frac{3+3}{5+3} = \frac{6}{8} =\frac{3}{4} \\ \\ \therefore \frac{6}{2}=3 \:\:and \:\:\frac{8}{2}=4

Hence, Verified

Similar questions