Math, asked by HimanshuJain2k18, 11 months ago

The numerator of a fraction is 3 less than its denominator. If 2 is added to both of its numerator and denominator then the sum of the new fraction and original is 29/20. find the original fraction.

(Plzz assume numerator = x
and denominator = y) ​

Answers

Answered by RvChaudharY50
26

\color {red}\huge\bold\star\underline\mathcal{Question:-} we have to find original Fraction ..

\huge\underline\blue{\sf Given:}

Numerator is 3 less than denominator ..

\rule{200}{4}

\bold{\boxed{\huge{\boxed{\orange{\small{\boxed{\huge{\red{\bold{\:Answer}}}}}}}}}}

Let Numerator = x

Denominator = y

so,

A/q,

y - x = 3 -  -  -  - (equation1)

Now,

 \frac{x}{y}  + ( \frac{x + 2}{y + 2} ) =  \frac{29}{20}  \\  \\  \frac{xy + 2x + xy + 2y}{y(y + 2)}  =  \frac{29}{20}

40xy + 40x + 40y = 29y^{2}  + 58y \\  \\ 29y ^{2}  + 58y - 40xy  -  40x  -  40y = 0

Putting value of y = (x+3) now ,

29(x + 3)^{2}  + 58x + 174 - 40 {x}^{2}  - 00x - 120 = 0 \\  \\ 11x ^{2}  - 32x - 315 = 0 \\  \\ 11 {x}^{2}  - 77x + 45x - 315 = 0 \\  \\ 11x(x - 7) + 45(x - 7) = 0 \\  \\ (11x + 45)(x - 7) = 0 \\  \\ x =   \frac{ - 45}{11}  \: or \: 7 \\  \\  \\

so,

y = 7 + 3 = 10

\</strong><strong>h</strong><strong>u</strong><strong>g</strong><strong>e</strong><strong>\red{\boxed{\sf </strong><strong> </strong><strong>Fraction\</strong><strong>:</strong><strong>=</strong><strong>\</strong><strong>:</strong><strong>\frac{7}{10}</strong><strong>}}

Answered by gauravsharmatech
0

Answer:

answer in the picture format..

hope you get it...

Attachments:
Similar questions