the numerator of a fraction is 3 less than its denominator if 1is added to the denominator the fraction is decrased by 1/15find the fraction
Answers
AnswEr:-
Fraction = 2/5 or 6/9
Case 1:-
• Numerator = Denominator - 3
Let the denominator be n & numerator be (n - 3)
∴ Fraction = (n - 3)/n
Case 2:-
• 1 added to denominator, fraction is decreased by 1/15
According to question:-
⇒ (n - 3)/(n + 1) = [(n - 3)/n] - 1/15
⇒ (n - 3)/(n + 1) = [15(n - 3) - n]/15n
⇒ (n - 3)/(n + 1) = [15n - 45 - n]/15n
⇒ (n - 3)/(n + 1) = [14n - 45]/15n
⇒ 15n(n - 3) = (n + 1)(14n - 45)
⇒ 15n² - 45n = 14n² - 45n + 14n - 45
⇒ 15n² - 45n = 14n² - 31n - 45
⇒ 15n² - 14n² - 45n + 31n + 45 = 0
⇒ n² - 14n + 45 = 0
⇒ n² - 5n - 9n + 45 = 0
⇒ n(n - 5) - 9(n - 5) = 0
⇒ (n - 5)(n - 9) = 0
⇒ n = 5 or n = 9
So, denominator of fraction = 5 or 9 .
Numerator:- (when denominator is 5)
⇒ Numerator = n - 3
⇒ Numerator = 5 - 3
⇒ Numerator = 2
∴ Fraction = 2/5
Numerator:- (when denominator is 9)
⇒ Numerator = n - 3
⇒ Numerator = 9 - 3
⇒ Numerator = 6
∴ Fraction = 6/9
Therefore,as both fractions fulfills the desires of question:-
Fraction is 2/5 or 6/9 .
Given:-
numerator is 3 less than the denominator of a fraction.
To find:-
The fraction.
Solution:-
Let the denominator be 'x' and the numerator be (x - 3).
The fraction becomes (x - 3)/x
A/q,
1 is added to the denominator and the fraction is decreased by 1/15.
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
So, we find two values for the denominator which are 9 and 5.
If denominator is 9, numerator = (n - 3) = (9 - 3) = 6
So, the fraction is 6/9 (or 2/3).
if denominator is 5, numerator = (n - 3) = (5 - 3) = 2
So, the fraction is 2/5.
∴Hence, the fraction is 2/5 or 6/9 (2/3).