Math, asked by AtharvNimbalkar, 11 months ago


The numerator of a fraction is 3 less than its denominator. If 2 is added to both the
and the denominator, then the sum of the new fraction and original fraction is 2930. Find the
original fraction

Answers

Answered by Anonymous
16

Solution (Question Error):

\bf{\red{\underline{\bf{Given\::}}}}

The numerator of a fraction is 3 less than it's denominator. If 2 is added to both the numerator and denominator, then the sum of the new fraction and original fraction is 29/20.

\bf{\red{\underline{\bf{To\:find\::}}}}

The original fraction.

\bf{\red{\underline{\bf{Explanation\::}}}}

Let the denominator be r

Let the numerator be (r-3)

So;

\boxed{\bf{The\:orginal\:fraction=\frac{r-3}{r} }}}}}

A/q

\longrightarrow\sf{\dfrac{r-3}{r} +\dfrac{r-3+2}{r+2}   =\dfrac{29}{20} }\\\\\\\longrightarrow\sf{\dfrac{r-3}{r} +\dfrac{r-1}{r+2} =\dfrac{29}{20} }\\\\\\\longrightarrow\sf{\dfrac{(r+2)(r-3)+(r)(r-1)}{r(r+2)} =\dfrac{29}{20} }\\\\\\\longrightarrow\sf{\dfrac{r^{2}-3r+2r-6 +r^{2} -r}{r^{2} +2r} =\dfrac{29}{20} }\\\\\\\longrightarrow\sf{\dfrac{2r^{2}-2r-6 }{r^{2}+2r } =\dfrac{29}{20} }\\\\\\\longrightarrow\sf{20(2r^{2} -2r-6)=29(r^{2} +2r)}\\\\\\\longrightarrow\sf{40r^{2}-40r-120=29r^{2}+58}

\longrightarrow\sf{40r^{2} -29r^{2} -40r-58r-120=0}\\\\\\\longrightarrow\sf{11r^{2} -98r-120=0}

\underline{\underline{\bf{Using\:Quadratic\:formula\::}}}}}

As the given polynomial as compared with ax² + bx + c

  • a = 11
  • b = -98
  • c = -120

Now;

\boxed{\bf{x=\frac{-b\pm\sqrt{b^{2}-4ac } }{2a}}}}}

\longrightarrow\sf{x=\dfrac{-(-98)\pm\sqrt{(-98)^{2} -4\times 11\times (-120)} }{2\times 11}} \\\\\\\longrightarrow\sf{x=\dfrac{98\pm\sqrt{9604-(-5280)} }{22} }\\\\\\\longrightarrow\sf{x=\dfrac{98\pm\sqrt{9604+5280} }{22} }\\\\\\\longrightarrow\sf{x=\dfrac{98\pm\sqrt{14884} }{22} }\\\\\\\longrightarrow\sf{x=\dfrac{98\pm122}{22} }\\\\\\\longrightarrow\sf{x=\dfrac{98+122}{22} \:\:Or\:\:x=\dfrac{98-122}{22} }\\\\\\\longrightarrow\sf{x=\cancel{\dfrac{220}{22}} \:\:\:Or\:\:\:x=\dfrac{-24}{22} }

\longrightarrow\sf{\orange{x=10\:\:\:Or\:\:\:x\neq \dfrac{-24}{22} }}

Thus;

r = 10

\boxed{\bf{The\:orginal\:fraction=\frac{10-3}{10} ={\boxed{\sf{\frac{7}{10}}}}}}}

Answered by Libra786
9

Answer:

Step-by-step explanation:

☆ Let the denominator be x

           Numerator  is x-3

The fraction is (x-3)/x

when 2 is added to numerator and denominator

                             

 we have fraction as (x-1)/(x+2) 

A/Q  (x-3)/x +(x-1)/(x+2)= 29/20

  ⇒    (x-3)((x+2) +x(x-1)=x(x+2)*29/20

  ⇒    (x²-6-x + x²-x)20= 29x²+58x

  ⇒    40x²-120-40x=29x²+58x

  ⇒    11x²-98x- 120=0

  ⇒    11x² - 110x +12x -120=0

  ⇒     (11x+12)(x-10)=0

Canceling the negative fraction value  of x we have x=10

Then the fraction (x-3)/x=7/10

Read more on Brainly.in - https://brainly.in/question/4446132#readmore

Similar questions