Math, asked by sMiTsHaH3, 2 months ago

The numerator of a fraction is 3 less than its denominator. if 2 is added to both the numerator and the denominator, then the sum of new fraction and orignal fraction is 29/20. find the original fraction.​

Answers

Answered by assingh
17

Topic :-

Linear Equations

Given :-

The numerator of a fraction is 3 less than its denominator. If 2 is added to both the numerator and the denominator, then the sum of new fraction and original fraction is 29/20.

To Find :-

Original Fraction

Solution :-

Let denominator of fraction be 'x'.

Then numerator will be ' x - 3 ' as it is 3 less than denominator.

So, original fraction is

\dfrac{x-3}{x}

Add 2 to both numerator and denominator,

New fraction

\dfrac{x-3+2}{x+2}

\dfrac{x-1}{x+2}

Add both fractions,

\dfrac{x-3}{x}+\dfrac{x-1}{x+2}=\dfrac{29}{20}

\dfrac{(x-3)(x+2)+x(x-1)}{x(x+2)}=\dfrac{29}{20}

\dfrac{x^2+2x-3x-6+x^2-x}{x(x+2)}=\dfrac{29}{20}

\dfrac{2x^2-2x-6}{x^2+2x}=\dfrac{29}{20}

Now, cross multiply,

20( 2x² - 2x - 6 ) = 29( x² + 2x )

40x² - 40x - 120 = 29x² + 58x

40x² - 29x² - 40x - 58x - 120 = 0

11x² - 98x - 120 = 0

11x² - 110x + 12x - 120 = 0

11x( x - 10 ) + 12( x - 10 ) = 0

( 11x + 12 )( x - 10 ) = 0

11x + 12 = 0

x = -12/11 or

x - 10 = 0

x = 10

So, x = 10 or -12/11

Original Fraction

\dfrac{x-3}{x}

Put x = 10,

\dfrac{10-3}{10}

\dfrac{7}{10}

Put x = -12/11,

\dfrac{\dfrac{-12}{11}-3}{\dfrac{-12}{11}}

\dfrac{\dfrac{-45}{11}}{\dfrac{-12}{11}}

Answer :-

So, original fractions are

\dfrac{7}{10} and

\dfrac{\dfrac{-45}{11}}{\dfrac{-12}{11}}

Answered by TheBrainlyStar00001
233

  \boxed{\boxed{\frak{ \bigstar \:  \underline {\cal{Q}\frak{uestion }}}}} - \begin{cases}\sf{ \underline{\:\;\;The \:  numerator \:  of \:  a \:  fraction  \: is \:  3 \:  less \:  than \:  its \:   }}\\\sf{ \underline{\;\;\;denominator. \:  if \:  2  \: is \:  added \:  to \:  both \:  the \:  numerator \:  and   }}\\\sf{ \underline{\:\;\;the \:  denominator,  \: then  \: the \:  sum \:  of \:  new  \: fraction }} \\  \:  \sf{ \underline{\:\;\;orignal \:  fraction  \: is   \: \frac{29}{20} .  \:  find \:  the \:  original  \: fraction.}}\end{cases} \\  \\  \\

  \boxed{\boxed{\frak{☯  \:  \underline {Given }}}} - \begin{cases}\bf{ \underline{\:\;\;The \:  numerator \:  of \:  a \:  fraction  \: is \:  3 \:  less \:  than \:  its \:   }}\\\bf{ \underline{\;\;\;denominator. \:  if \:  2  \: is \:  added \:  to \:  both \:  the \:  numerator \:  and   }}\\\bf{ \underline{\:\;\;the \:  denominator,  \: then  \: the \:  sum \:  of \:  new  \: fraction }} \\  \:  \bf{ \underline{\:\;\;orignal \:  fraction  \: is   \: \frac{29}{20} .  \:  }}\end{cases} \\  \\  \\

  \boxed{\boxed{\frak{☯  \:  \underline {To \: Find }}}} - \begin{cases}\boldsymbol{ \underline{\:\;\;find \: \:  the \:  \: original \: \:  number.}}\end{cases} \\  \\  \\

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀

⠀⠀⠀⠀⠀⠀

 \bigstar\; \huge{\boldsymbol{{ \underbrace{ \underline  { \:  \:  \:  \:  \: Solution \:  \:  \:  \:  \:  \: }}}}}\\\\

Let,

  •  \large { \bf{ \underline{☯ \:Original\: fraction \: =   \: \sf  \dfrac{x - 3}{x} }}}\\\\

\underline{\bf{\dag} \:\mathfrak{ \bf{A} \frak {ccording \:to\:the\:condition, }} }\\\\

  •  \large { \bf{ \underline{☯\: New\: fraction \: =   \: \sf  \dfrac{x - 3 + 2}{x + 2}  \:  \:  \:  and \: \:  \:  \dfrac{x - 1}{x + 2} }}}\\\\

Then,

⠀⠀⠀⠀

  \sf \: \dfrac{x - 3}{x} \:  +   \:  \dfrac{x - 1}{x + 2}  =  \dfrac{29}{20} \\\\

➙ 20 [ (x - 3) (x + 2) + x (x - 1)] = 29 (x² + 2x)

➙ 20 [ x² - x - 6 + x² - x] = 29x² + 58x

➙ 20 [ 2x² - 2x - 6 ] = 29x² + 58x

➙ 40x² - 40x - 120 - 29x² - 58x = 0

➙ 11x² - 98x - 120 = 0

➙ 11x² - 110x + 12x - 120 = 0

➙ 11x (x - 10) + 12 (x - 10) = 0

➙ (x - 10) + (11x + 12) = 0

➙ x = 10

  •  \large { \bf{ \underline{☯ \:Original\: fraction \: =   \: \sf  \dfrac{x - 3}{x} }}}\\\\

 \large { \bf{:\implies    \: \sf  \dfrac{10 -3}{10} }}\\\\

 \large { \bf{:\implies    \: \sf  \dfrac{7}{10} }}\\\\

\sf\therefore  \:x \:  =  \:  \frac{ - 12}{11}  \: \boldsymbol{\: \underline  {is \: rejected.}} \\\\

{\underline{\sf{\therefore \: the \; original \; no. \:  \; is\; \bf{  \dfrac{7}{10} }.}}}

\\\\

★ Hope it helps u ★

Similar questions