Math, asked by glmangareader, 1 month ago

The numerator of a fraction is 3 less than its denominator. If we add 1 to both numerator and denominator, it becomes equal to 5/8. Find the fraction.

Please give full explanation and write it on a paper

Answers

Answered by Sauron
159

Step-by-step explanation:

Let,

Numerator of a fraction = x

Denominator of a fraction = x + 3

If we add 1 to both numerator and denominator, it becomes equal to 5/8.

Numerator of a fraction = x + 1

Denominator of a fraction = x + 3 + 1 = x + 4

According to the Question :

 \dfrac{x \:  +  \: 1}{x \:  +  \: 4}  \:  =  \:  \dfrac{5}{8}

⇒ 8 (x + 1) = 5 (x + 4)

⇒ 8x + 8 = 5x + 20

⇒ 8x - 5x = 20 - 8

⇒ 3x = 12

⇒ x = 12/3

x = 4

Numerator of a fraction = 4

Denominator of a fraction = x + 3

⇒ 4 + 3

⇒ 7

Denominator of a fraction = 7

Therefore, the fraction is \dfrac{4}{7}

Answered by Anonymous
125

Answer:

Given :-

  • The numerator of a fraction is 3 less than its denominator.
  • If we added 1 to both numerator and denominator, it becomes equal to 5/8.

To Find :-

  • What is the original fraction.

Solution :-

Let,

\mapsto \bf{Denominator =\: x}

\mapsto \bf{Numerator =\: x - 3}

Hence, the required original fraction will be :

\leadsto \sf \dfrac{Numerator}{Denominator}

\leadsto \sf\bold{\green{\dfrac{x - 3}{x}}}

According to the question,

\implies \sf \dfrac{Numerator + 1}{Denominator + 1} =\: \dfrac{5}{8}

\implies \sf \dfrac{x - 3 + 1}{x + 1} =\: \dfrac{5}{8}

\implies \sf \dfrac{x - 2}{x + 1} =\: \dfrac{5}{8}

By doing cross multiplication we get,

\implies \sf 8(x - 2) =\: 5(x + 1)

\implies \sf 8x - 16 =\: 5x + 5

\implies \sf 8x - 5x =\: 5 + 16

\implies \sf 3x =\: 21

\implies \sf x =\: \dfrac{\cancel{21}}{\cancel{3}}

\implies \sf x =\: \dfrac{7}{1}

\implies \sf\bold{\purple{x =\: 7}}

Hence, the required original fraction is :

\longrightarrow \sf Original\: Fraction =\: \dfrac{x - 3}{x}

\longrightarrow \sf Original\: Fraction =\: \dfrac{7 - 3}{7}

\longrightarrow \sf\bold{\red{Original\: Fraction =\: \dfrac{4}{7}}}

{\small{\bold{\underline{\therefore\: The\: original\: fraction\: is\: \dfrac{4}{7}\: .}}}}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

\bigstar\: \: \sf\bold{\purple{VERIFICATION\: :-}}

\implies \sf \dfrac{x - 3 + 1}{x + 1} =\: \dfrac{5}{8}

By putting x = 7 we get,

\implies \sf \dfrac{7 - 3 + 1}{7 + 1} =\: \dfrac{5}{8}

\implies \sf \dfrac{7 - 2}{8} =\: \dfrac{5}{8}

\implies \bf \dfrac{5}{8} =\: \dfrac{5}{8}

Hence, Verified.

Similar questions