Math, asked by AmanRajleo, 1 year ago

the numerator of a fraction is 3 less than its denominator . If 1 is added to the denominator, the fraction is decrease by 1/15 . find the fraction

Answers

Answered by siddhartharao77
8

Answer:

(2/5),(6/9)

Step-by-step explanation:

Let the denominator be 'x' and denominator be 'y'.

Hence, the fraction is (x/y).

(i)

Given that numerator is 3 less than its denominator.

⇒ x = y - 3


(ii)

Given that if 1 is added to the denominator, the fraction is decrease by 1/15.

⇒ (x/y + 1) = (x/y) - (1/15)

⇒ (y - 3/y + 1) = (y - 3/y) - (1/15)

⇒ 15y(y - 3) =15(y - 3)(y + 1) - y(y + 1)

⇒ 15y²- 45y = 15(y² + y - 3y - 3) - y² - y

⇒ 15y² - 45y = 15y² + 15y - 45y - 45 - y² - y

⇒ 15y² - 45y = 14y² - 31y - 45

⇒ 14y² + 14y - 45 = 15y²

⇒ -y² + 14y - 45 = 0

⇒ y² - 14y + 45 = 0

⇒ y² - 5y - 9y + 45 = 0

⇒ y(y - 5) - 9(y - 5) = 0

⇒ (y - 5)(y - 9) = 0

⇒ y = 5,9.


Substitute y = 5 in (i), we get

⇒ x = 5 - 3

⇒ x = 2


Substitute y = 9 in (i), we get

⇒ x = 9 - 3

⇒ x = 6.


Therefore, the original fraction:

(2/5), (6/9).


Hope it helps!


siddhartharao77: :-)
Answered by Siddharta7
3

Answer:

(2/5),(6/9)

Step-by-step explanation:

Let the denominator be 'x' and denominator be 'y'.

Hence, the fraction is (x/y).

(i)

Given that numerator is 3 less than its denominator.

⇒ x = y - 3

(ii)

Given that if 1 is added to the denominator, the fraction is decrease by 1/15.

⇒ (x/y + 1) = (x/y) - (1/15)

⇒ (y - 3/y + 1) = (y - 3/y) - (1/15)

⇒ 15y(y - 3) =15(y - 3)(y + 1) - y(y + 1)

⇒ 15y²- 45y = 15(y² + y - 3y - 3) - y² - y

⇒ 15y² - 45y = 15y² + 15y - 45y - 45 - y² - y

⇒ 15y² - 45y = 14y² - 31y - 45

⇒ 14y² + 14y - 45 = 15y²

⇒ -y² + 14y - 45 = 0

⇒ y² - 14y + 45 = 0

⇒ y² - 5y - 9y + 45 = 0

⇒ y(y - 5) - 9(y - 5) = 0

⇒ (y - 5)(y - 9) = 0

⇒ y = 5,9.


Substitute y = 5 in (i), we get

⇒ x = 5 - 3

⇒ x = 2


Substitute y = 9 in (i), we get

⇒ x = 9 - 3

⇒ x = 6.

Therefore, the original fraction:

⇒ (2/5), (6/9).

Similar questions