Math, asked by rajeshmond3915, 1 year ago

The numerator of a fraction is 3 less than the denominator. If both the numerator and the denominator are increased by 2the new fraction becomes 6/7.find original fraction

Answers

Answered by Jesika333
0

Answer:

19/1

Step-by-step explanation:

Let the numerator be x-3 and denominator be x

X-3+2/x+2=6/7

x-1/x+2=6/7

7x-7=6x+12

X=16/1

Answered by WildCat7083
82

Let,

\mapsto \bf{Denominator =\: x}

\mapsto \bf{Numerator =\: x - 3}

\leadsto \sf \dfrac{Numerator}{Denominator}</p><p>\leadsto \sf\bold{\green{\dfrac{x - 3}{x}}}

\purple{\bigstar}\: \: \bf{According\: to\: the\: question\: :-}

\begin{gathered}\implies \sf \dfrac{Numerator + 2}{Denominator + 2} =\: New\: fraction\\\end{gathered} \\  \\ \implies \sf \dfrac{x - 3 + 2}{x + 2} =\: \dfrac{6}{7} \\  \\ \implies \sf \dfrac{x - 1}{x + 2} =\: \dfrac{6}{7}

\begin{gathered}\purple{\bigstar}\: \: \bf{By\: doing\: cross\: multiplication\: we\: get\: :-}\\\end{gathered}

\implies \sf 7(x - 1) =\: 6(x + 2) \\ \implies \sf 7x - 6x =\: 12 + 7 \\ \implies \sf\bold{\green{x =\: 19}}

Hence, the required original fraction will be :

\longrightarrow \sf Original\: Fraction =\: \dfrac{x - 3}{x}

\longrightarrow \sf Original\: Fraction =\:\dfrac{19 - 3}{19}

\longrightarrow \sf\bold{\red{Original\: Fraction =\: \dfrac{16}{19}}}

{\small{\bold{\underline{\therefore\: The\: original\: fraction\: is\: \dfrac{16}{19}\: .}}}}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

\large \bold{@WildCat7083}

Similar questions