Math, asked by DaValorous, 10 months ago

The numerator of a fraction is 3 less than the denominator. If 4 is added to both the numerator and denominator, the value of fraction increases by 1/8 , find the fraction.​

Answers

Answered by Anonymous
56

{\purple{\underline{\underline{\large{\mathtt{Answer:}}}}}}

Given:

  • We have been given that the numerator of a fraction is 3 less than the denominator.
  • When 4 is added to both the numerator and denominator, the value of fraction increases by 1/8.

To Find:

  • We need to find the fraction.

Solution:

Let the denominator be x.

∴ Numerator will be (x - 3)

Now, according to the question, we have

 \longrightarrow\sf{ \dfrac{x - 1}{x + 4}  -  \dfrac{x - 3}{x}  =  \dfrac{1}{8}}

\longrightarrow\sf{ \dfrac{x(x + 1) - (x - 3)(x - 4)}{x(x - 4)}  =  \dfrac{1}{8} }

\longrightarrow\sf{8x(x + 1) = 8(x - 3)(x + 4) + x(x + 4)}

\longrightarrow\sf{ {8x}^{2}  + 8x = 8( {x}^{2}   + x - 12) +  {x}^{2}  + 4x}

\longrightarrow\sf{8 {x}^{2}   - 8 {x}^{2}  -  {x}^{2}  + 8x - 8x - 4x + 96 = 0}

\longrightarrow\sf{ -  {x}^{2}  - 4x + 96 = 0}

\longrightarrow\sf{ {x}^{2}  + 4x - 96 = 0}

Using the splitting the middle term, we have

\longrightarrow\sf{ {x}^{2}  + 12x - 4x - 96}

\longrightarrow\sf{x(x + 12) - 8(x + 12)}

\longrightarrow\sf{(x + 12)(x - 8)}

Now, Either (x + 12) = 0 or (x - 8) = 0.

When (x + 12) = 0

\mapsto\sf{x + 12 = 0}

\mapsto\sf{x =  - 12}

When (x - 8) = 0

\mapsto\sf{x - 8 = 0}

\mapsto\sf{x = 8}

But, x = -12 is rejected.

∴ Fraction = \sf{\dfrac{8 - 3}{5} = \dfrac{5}{8}}

Hence, the required fraction is 5/8.


RvChaudharY50: Awesome.
Answered by Anonymous
35

\huge\mathfrak\blue{Answer:}

Given:

  • Given that numerator of a fraction is 3 less then the denominator
  • When 4 is added to both numerator and denominator the value of fraction increases by 1/8

To Find:

  • We have to find the given fraction

Solution:

Let the denominator of fraction = x

Numerator of fraction = ( x - 3 )

\boxed{\sf{\pink{Original \: Fraction = \dfrac{x-3}{x}}}}

________________________________

\bigstar \: \: \underline{\large\mathfrak\orange{According \: to \: the \: Question:}}

When 4 is added to both numerator and denominator the values of fraction gets increased by 1/8

\hookrightarrow \sf{\dfrac{(x-3)+4}{x+4}=\dfrac{x-3}{x} + \dfrac{1}{8}} \\

\hookrightarrow \sf{\dfrac{x-3+4}{x+4} - \dfrac{x-3}{x}= \dfrac{1}{8}} \\

\hookrightarrow \sf{\dfrac{x-1}{x+4} - \dfrac{x-3}{x}= \dfrac{1}{8}} \\

Taking LCM

\hookrightarrow \sf{\dfrac{x(x-1) - (x-3)(x+4)}{x(x+4)}= \dfrac{1}{8}} \\

Solving the Equation

\hookrightarrow \sf{\dfrac{(x^2 - x) - (x^2 - x - 12)}{x(x+4)}= \dfrac{1}{8}} \\

\hookrightarrow \sf{\dfrac{x^2 - x - x^2 + x + 12}{x^2 +4x}= \dfrac{1}{8}} \\

\hookrightarrow \sf{\dfrac{12}{x^2+4x}= \dfrac{1}{8}} \\

Cross Multiplying the Terms

\hookrightarrow \sf{96 = x^2 + 4x }

\hookrightarrow \sf{ x^2 + 4x - 96 = 0}

________________________________

Solving the Equation using middle term splitting method

\hookrightarrow \sf{x^2 + 12x - 8x - 96 = 0}

\hookrightarrow \sf{x(x+ 12)- 8(x + 12) = 0}

\hookrightarrow \sf{(x-8)(x+12) = 0}

Either

\implies \sf{ x - 8 = 0}

\implies \sf{ x = 8}

Or

\implies \sf{ x + 12 = 0}

\implies \sf{ x = (-12)}

____________________________________

When x = 8

\implies \sf{Fraction = \dfrac{8-3}{8}}

\implies \sf{\dfrac{5}{8} }

When x = - 12

\implies \sf{ Fraction = \dfrac{-12-3}{-12}}

\implies \sf{ \dfrac{-15}{-12}}

\implies \sf{ \dfrac{5}{4}}

But in case of x = -12 numerator is bigger than denominator

Hence x = - 12 gets rejected

____________________________

\underline{\huge\sf{\red{A}\orange{n}\green{s}\pink{w}\blue{e}\purple{r}} }

 \boxed{\sf{\red{Original \: Fraction = \dfrac{5}{8}}}}

___________________________________


RvChaudharY50: Perfect
Similar questions