Math, asked by manas7572, 6 months ago

The numerator of a fraction is 4 less than the denominator. if 1 added to both it's numerator and denominator, it becomes 1/2. find the fraction​

Answers

Answered by TheValkyrie
5

Answer:

\bigstar{\bold{Fraction=\dfrac{3}{7} }}

Step-by-step explanation:

\Large{\underline{\rm{Given:}}}

  • Numerator of the fraction is 4 less than the denominator
  • If 1 is added to both the numerator and denominator, fraction becomes 1/2.

\Large{\underline{\rm{To\:Find:}}}

  • The fraction

\Large{\underline{\rm{Solution:}}}

↬ Let the denominator of the fraction be x.

↬ Hence,

   Numerator = x - 4

↬ Therefore,

    \tt{The\:fraction=\dfrac{x-4}{x}}

↬ By given,

    Adding 1 to both numerator and denominator, it becomes 1/2.

   \tt{\dfrac{x-4+1}{x+1} =\dfrac{1}{2} }

     \tt{\dfrac{x-3}{x+1}=\dfrac{1}{2}}

Cross multiplying it we get,

   2(x - 3) = x + 1

   2x - 6 = x + 1

   2x - x = 1 + 6

    x = 7

↬ Hence the denominator of the fraction is 7.

↬ Now,

   Numerator = x - 4

   Numerator = 7 - 4 = 3

↬ Hence numerator of the fraction is 3.

↬ Therefore the fraction is 3/7.

    \boxed{\bold{Fraction=\dfrac{3}{7} }}

\Large{\underline{\rm{Verification:}}}

↬ Numerator = Denominator - 4

   3 = 7 - 4

   3 = 3

↬ Adding 1 to both numerator and denominator, the fraction becomes 1/2.

   (3 + 1)/(7+1) = 1/2

   4/8 = 1/2

   1/2 = 1/2

Hence verified.

Answered by InfiniteSoul
4

\sf{\bold{\green{\underline{\underline{Given}}}}}

  • Numberator is 4 less than denominator
  • If one is added to both the fractions becomes 1 / 2

______________________

\sf{\bold{\green{\underline{\underline{To\:Find}}}}}

  • Find the fraction = ??

______________________

\sf{\bold{\green{\underline{\underline{Solution}}}}}

⠀⠀⠀⠀

let the denominator be x

⠀⠀⠀⠀

ATQ : -

⠀⠀⠀⠀

numerator = x - 4

⠀⠀⠀⠀

  • If one is added to both the fractions becomes 1 / 2

⠀⠀⠀⠀

\sf:\implies \: {\bold{ \dfrac{x-4+1}{x+1} = \dfrac{1}{2} }}

⠀⠀⠀⠀

\sf:\implies \: {\bold{ \dfrac{x- 3}{x+1} = \dfrac{1}{2} }}

⠀⠀⠀⠀

\sf:\implies \: {\bold{ 2 ( x - 3 ) = 1 ( x + 1 )}}

⠀⠀⠀⠀

\sf:\implies \: {\bold{ 2x - 6 = x + 1 }}

⠀⠀⠀⠀

\sf:\implies \: {\bold{ 2x - x = 6+ 1}}

⠀⠀⠀⠀

\sf:\implies \: {\bold{ x = 7 }}

⠀⠀⠀⠀

\sf{\red{\boxed{\bold{Denominator = 7}}}}

⠀⠀⠀⠀

  • Finding numerator

numerator = x - 4

⠀⠀⠀⠀

numerator = 7 - 4

⠀⠀⠀⠀

numerator = 3

⠀⠀

______________________

\sf{\bold{\green{\underline{\underline{Answer}}}}}

  • Required fraction = \sf{\bold{ \dfrac{3}{7} }}
  • ⠀⠀⠀⠀

⠀⠀⠀⠀

Verification :-

⠀⠀⠀⠀

\sf:\implies \: {\bold{ \dfrac{3+1}{7+1} = \dfrac{1}{2} }}

⠀⠀⠀⠀

\sf:\implies \: {\bold{ \dfrac{4}{8} = \dfrac{1}{2} }}

⠀⠀⠀⠀

\sf:\implies \: {\bold{ \dfrac{1}{2} = \dfrac{1}{2} }}

⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀.... Hence Proved

Similar questions