Math, asked by Anonymous, 8 months ago

The numerator of a fraction is 6 less than the denominator, if 3 is added to numerator fraction becomes 2/3, find original fraction

Answers

Answered by RISH4BH
168

\large{\underline{\underline{\red{\sf{Given: }}}}}

  • \tt{Numerator\:of\:fraction\:is\:6\:less\:than\:denominator.}
  • \tt{On\:adding\:3\:to\: numerator\:frac^n\:becomes\:\dfrac{2}{3}.}

\large{\underline{\underline{\red{\sf{To\:Find: }}}}}

  • \tt{The\: original\:fraction.}

\large{\underline{\underline{\red{\sf{ Answer:}}}}}

\tt{Let\:us\:suppose;}

  • \purple{\tt{Numerator\:be\:x.}}
  • \purple{\tt{Denominator\:be\:y.}}

\underline{\blue{\sf{\leadsto By\:first\:given\: condition:}}}

\tt{\implies x + 6 = y. }

\tt{\implies y-x=6.}

\tt{\implies 2(y-x)=12.}

\underline{\boxed{\green{\tt{\mapsto 2y - 2x = 12.}}}} ................(i)

__________________________________________

\underline{\blue{\sf{\leadsto By\:second\:given\: condition:}}}

\tt{\implies \dfrac{x+3}{y}=\dfrac{2}{3}.}

\tt{\implies 3(x+3)=2\times y.}

\tt{\implies 3x+9=2y.}

\underline{\boxed{\green{\tt{\mapsto 3x-2y =-9 .}}}} ...................(ii)

__________________________________________

\underline{\pink{\sf{\leadsto Adding\:equ^n \:(i)\:and\:(ii):-:}}}

\tt{\implies \cancel{2y}-2x+3x\cancel{-2y}=12-9 .}

\tt{\implies 3x-2x = 3.}

\red{\tt{\underset{\blue{Value\:of\:x}}{\underbrace{\dag \:\:\:\: x \:\:\:=3\:\:\:\:}}}}

__________________________________________

\underline{\pink{\sf{\leadsto Putting\:this\:value\:in\:(i):}}}

\tt{\implies y-x=6.}

\tt{\implies y -3=6.}

\tt{\implies y=6+3 .}

\tt{\implies y=9.}

\red{\tt{\underset{\blue{Value\:of\:y}}{\underbrace{\dag \:\:\:\: y \:\:\:=9\:\:\:\:}}}}

\orange{\sf{\mapsto Hence\:value\:of\:x\:is\:3\:and\:y\:is\:9.}}

\purple{\tt{\underset{\pink{Required\:fraction.}}{\underbrace{Original\:fraction=\dfrac{x}{y}=\dfrac{3}{9}}}}}

Answered by BrainlyEmpire
3

Answer:

Fraction obtained —1/3

Let the original fraction be X/y Given X=y-6, so the fraction can be written as y-6/y and

given if 3 is added to numerator then fraction becomes 2/3 so the fraction is y-6+3/y=2/3--->y-3/y=2/3---->3(y-3)=2y--->3y-2y=9--->y=9 so the fraction is y-6/y=9-6/9=3/9=1/3.

Similar questions