Math, asked by sonakshiagrawal883, 8 months ago

the numerator of a fraction is 6 less than the denominator.If 3 is added to the numerator the fraction is equal to 2/3.what is the original fraction equal to?​

Answers

Answered by sethrollins13
23

Given :

  • The numerator of a fraction is 6 less than the denominator .
  • If 3 is added to the numerator the fraction is equal to 2/3.

To Find :

  • Original Fraction.

Solution :

\longmapsto\tt{Let\:Denominator\:be=x}

As Given that Numerator of fraction is 6 less than the Denominator. So ,

\longmapsto\tt{Numerator=x-6}

Now ,

  • If 3 is added to the numerator the fraction is equal to 2/3 .

\longmapsto\tt{Numerator=x-6+3}

\longmapsto\tt{x-3}

A.T.Q :

\longmapsto\tt{\dfrac{x-3}{x}=\dfrac{2}{3}}

\longmapsto\tt{2(x)=3(x-3)}

\longmapsto\tt{2x=3x-9}

\longmapsto\tt{2x-3x=-9}

\longmapsto\tt{-1x=-9}

\longmapsto\tt\bf{x=9}

Value of x is 9 ....

Therefore :

\longmapsto\tt{Numerator=9-6}

\longmapsto\tt\bf{3}

\longmapsto\tt\bf{Denominator=9}

So , The Original Fraction is 3/9 ...

Answered by Anonymous
62

Given :-

  • The numerator of fraction = 6 less than the denominator.

  • The fraction by adding 3 to numerator = 2/3.

To Find :-

  • The original fraction.

Solution :-

: \implies\sf{Let, \: the \: denominator =  \: }{\textsf{\textbf{x}}} \\  \\ : \implies\sf{Let, \: the \: numerator =  \: }{\textsf{\textbf{x - 6}}} \\  \\ \sf{Now,} \\  \\ : \implies\sf{numerator =  \: }{\textsf{\textbf{x - 6 + 3}}} \\  \\ : \implies\sf{x - 3} \\  \\ : \implies\sf{ \frac{x - 3}{x}  =  \frac{2}{3} } \\  \\ : \implies\sf{2(x) = 3(x - 3)} \\  \\ : \implies\sf{2x = 3x - 9} \\  \\ : \implies\sf{2x - 3x =  -9} \\  \\ : \implies\sf{ -1x =  -9} \\  \\ : \implies\sf{x =  \: }{\textsf{\textbf{9.}}} \\  \\

Value of x = 9.

Therefore,

  • Numerator = 9 - 6 = 3.

  • Denominator = 9.
Similar questions