Math, asked by nirmali26, 4 months ago

The numerator of a fraction is 6 less than the denominator .If 1 is added to both numerator and denominator,the fraction becomes 1/2,Find the fraction​

Answers

Answered by shubhamsingh1040
1

Answer:

Prove: (KL)2 = KM KN

LM

Draw

LN

and so that we formed two similar triangles. Then show the

proof using the Two-Column Proof.

Proof:

Statement

Reason

m NLK

1

(m

LN

) and

(1)

1

LN

mzLMN (m

m2NLK = m_LMN

2

(2)

(3)

ZNLK ZLMN

mzLNK = m NLM + m2LMN

m LNK = m NLM + m2NLK

mZKLM = m NLM + m2NLK

(4)

(5)

(6)

mzLNK = m KLM

(7)

ZLNK

ZKLM

(8)

A

MKL ~ALNM

(9)

KM

KL

RT.

10. Lengths of sides of similar triangles are

KN

ILK

(10)

KM KN

2

Step-by-step explanation:

2:1:3:5 then

015.

In the

iven

PO I AB

find the

R: 3

degane meatured

anoz.

at die stald d, POIAB 2 :: 2 = 1:3:5 Y at

और 7 की गिय मान जाल करो

x

Zo

+

R R

as

2

4

A

.

+

B2) If x*y = 2( x+y), what is:

a. 3*1

b. 6*2

c. 23*45

Prove: (KL)2 = KM KN

LM

Draw

LN

and so that we formed two similar triangles. Then show the

proof using the Two-Column Proof.

Proof:

Statement

Reason

m NLK

1

(m

LN

) and

(1)

1

LN

mzLMN (m

m2NLK = m_LMN

2

(2)

(3)

ZNLK ZLMN

mzLNK = m NLM + m2LMN

m LNK = m NLM + m2NLK

mZKLM = m NLM + m2NLK

(4)

(5)

(6)

mzLNK = m KLM

(7)

ZLNK

ZKLM

(8)

A

MKL ~ALNM

(9)

KM

KL

RT.

10. Lengths of sides of similar triangles are

KN

ILK

(10)

KM KN

2

Answered by llTheUnkownStarll
2

Given:-

  • The numerator of a fraction is 6 less than the denominator .If 1 is added to both, the numerator and denominator the fraction becomes 1/2 .

To Find:-

  • Original Fraction .

Solution:-

:\implies\sf{Let\:Denominator\:be=x}

  • As Given that The numerator of a fraction is 6 less than the denominator .

 So,

:\implies\sf{Numerator=x-6}

Now,

If 1 is added to both, the numerator and denominator the fraction becomes 1/2

:\implies \sf{Numerator=x-6+1=x-5}

:\implies \sf{Denominator=x+1}

\boxed{\boxed{\pmb{\sf{\purple{According\: to\: the\: question}}}}}

:\implies \sf{\dfrac{x-5}{x+1}=\dfrac{1}{2}}

:\implies \sf{2(x-5)=1(x+1)}

:\implies \sf{2x-10=x+1}

:\implies \sf{2x-x=1+10}

:\implies \underline{\boxed{\frak{x=11}}} \: \blue{ \bigstar}

  • Hence, the value of x is 11 .

Therefore,

:\implies \sf{Numerator=11-6}

:\implies \sf{5}

:\implies \sf{Denominator=x}

:\implies \sf{11}

:\implies \underline{\boxed{\frak{ \frac{5}{11} }}} \: \pink{ \bigstar}

  • The Fraction is  {\bf{ \frac{5}{11}} } .
Similar questions