Math, asked by shailjabansal306, 6 months ago

The numerator of a fraction is 6 lessbthan the denominator. If 3 is added to the numerator, the fraction becomes equal to 2/3, find the original fraction​

Answers

Answered by Anonymous
2

\huge\bold{{\pink{Q}}{\blue{U}}{\green{E}}{\red{S}}{\purple{T}}{\orange{I}}{\pink{O}}{\blue{N}}{\green{❥}}}

The numerator of a fraction is 6 less than the denominator. If 3 is added to the numerator, the fraction becomes equal to \frac{2}{3}, find the original fraction.

\huge\bold{{\pink{G}}{\blue{I}}{\green{V}}{\red{E}}{\purple{N}}{\green{❥}}}

  • The numerator of a fraction is 6 less than the denominator.
  • When 3 is added to the numerator, the fraction becomes equal to \frac{2}{3}.

\huge\bold{{\pink{T}}{\blue{O}}{\green{  }}{\red{F}}{\purple{I}}{\orange{N}}{\pink{D}}{\green{❥}}}

The original fraction.

\huge\bold{{\pink{S}}{\blue{O}}{\green{L}}{\red{U}}{\purple{T}}{\orange{I}}{\pink{O}}{\blue{N}}{\green{❥}}}

Let the denominator be x.

So, numerator = (x-6)

According to condition,

\frac{(x-6)+3}{x}=  \frac{2}{3}

\frac{(x-6+3)}{x} = \frac{2}{3}

\frac{(x-3)}{x} =\frac{2}{3}

3(x-3)=2x

3x-9=2x

3x-2x=9

x = 9

\huge\bold{{\pink{H}}{\blue{E}}{\green{N}}{\red{C}}{\purple{E}}{\green{❥}}}

x =9

Denominator =x=9

Numerator =(x-6)=(9-6)=3

The original fraction =\frac{3}{9}

\huge\bold{{\pink{T}}{\blue{H}}{\green{E}}{\red{R}}{\purple{E}}{\orange{F}}{\pink{O}}{\blue{R}}{\red{E}}{\green{❥}}}

The original fraction is \frac{3}{9}.

\huge\bold{{\pink{V}}{\blue{E}}{\green{R}}{\red{I}}{\purple{F}}{\orange{I}}{\pink{C}}{\blue{A}}{\green{T}}{\red{I}}{\purple{O}}{\orange{N}}{\green{❥}}}

\frac{(3+3)}{9} =\frac{2}{3}

\frac{6}{9} =\frac{2}{3}

\frac{(6÷3)}{(9÷3)} =\frac{2}{3}

\frac{2}{3} =\frac{2}{3}

So, L.H.S = R.H.S.

Hence, verified.

\huge\bold{{\pink{D}}{\blue{O}}{\green{N}}{\red{E}}{\purple{࿐}}}

Similar questions