Math, asked by prathamgandu, 5 months ago

The numerator of a rational number is two greater than its denominator. If two is added to the denominator and two is subtracted from the numerator, it becomes 7/9. Find the rational number

Answers

Answered by EliteZeal
34

\underline{\underline{\huge{\gray{\tt{\textbf Answer :-}}}}}

 \:\:

\sf\large\bold{\orange{\underline{\blue{ Given :-}}}}

 \:\:

  • The numerator of a rational number is two greater than its denominator

  • If two is added to the denominator and two is subtracted from the numerator, it becomes 7/9

 \:\:

\sf\large\bold{\orange{\underline{\blue{ To \: Find :-}}}}

 \:\:

  • The rational number

 \:\:

\sf\large\bold{\orange{\underline{\blue{ Solution :-}}}}

 \:\:

  • Let the numerator be 'n'

  • Let the denominator be 'd'

 \:\:

\underline{ \underline{\bold{\texttt{Original Rational number :}}}}

 \:\:

 \bf \dfrac { n } { d } ⚊⚊⚊⚊ ⓵

 \:\:

Given that , The numerator of a rational number is two greater than its denominator

 \:\:

So,

 \:\:

: ➜ n = d + 2 ⚊⚊⚊⚊ ⓶

 \:\:

\underline{ \underline{\bold{\texttt{Adding 2 to denominator :}}}}

 \:\:

➠ d + 2

 \:\:

\underline{ \underline{\bold{\texttt{Subtracting 2 from numerator :}}}}

 \:\:

➠ n - 2

 \:\:

Also given that , If two is added to the denominator and two is subtracted from the numerator, it becomes 7/9

 \:\:

Thus ,

 \:\:

: ➜  \sf \dfrac { n - 2 } { d + 2 } = \dfrac { 7 } { 9 }

 \:\:

: ➜ 9(n - 2) = 7(d + 2)

 \:\:

: ➜ 9n - 18 = 7d + 14

 \:\:

: ➜ 9n - 7d = 14 + 18

 \:\:

: ➜ 9n - 7d = 32 ⚊⚊⚊⚊ ⓷

 \:\:

Putting n = d + 2 from ⓶ to ⓷

 \:\:

: ➜ 9n - 7d = 32

 \:\:

: ➜ 9(d + 2) - 7d = 32

 \:\:

: ➜ 9d + 18 - 7d = 32

 \:\:

: ➜ 2d = 32 - 18

 \:\:

: ➜ 2d = 14

 \:\:

: ➜  \sf d = \dfrac { 14 } { 2 }

 \:\:

: ➜ d = 7 ⚊⚊⚊⚊ ⓸

 \:\:

  • Hence the denominator is 7

 \:\:

Putting d = 7 from ⓸ to ⓶

 \:\:

: ➜ n = d + 2

 \:\:

: ➜ n = 7 + 2

 \:\:

: ➜ n = 9 ⚊⚊⚊⚊ ⓹

 \:\:

  • Hence the numerator is 9

 \:\:

Putting d = 7 from ⓸ & n = 9 from ⓹ to ⓵

 \:\:

: : ➨  \sf \dfrac { 9} { 7}

 \:\:

  •  \sf Hence \: the \: rational \: number \: is \: \dfrac { 9 } { 7 }
Answered by Ranveerx107
0

\sf\large\bold{\orange{\underline{\blue{ Solution :-}}}}

 \:\:

Let the numerator be 'n'

Let the denominator be 'd'

 \:\:

\underline{ \underline{\bold{\texttt{Original Rational number :}}}}

 \:\:

 \bf \dfrac { n } { d } ⚊⚊⚊⚊ ⓵

 \:\:

Given that , The numerator of a rational number is two greater than its denominator

 \:\:

So,

 \:\:

: ➜ n = d + 2 ⚊⚊⚊⚊ ⓶

 \:\:

\underline{ \underline{\bold{\texttt{Adding 2 to denominator :}}}}

 \:\:

➠ d + 2

 \:\:

\underline{ \underline{\bold{\texttt{Subtracting 2 from numerator :}}}}

 \:\:

➠ n - 2

 \:\:

Also given that , If two is added to the denominator and two is subtracted from the numerator, it becomes 7/9

 \:\:

Thus ,

 \:\:

: ➜  \sf \dfrac { n - 2 } { d + 2 } = \dfrac { 7 } { 9 }

 \:\:

: ➜ 9(n - 2) = 7(d + 2)

 \:\:

: ➜ 9n - 18 = 7d + 14

 \:\:

: ➜ 9n - 7d = 14 + 18

 \:\:

: ➜ 9n - 7d = 32 ⚊⚊⚊⚊ ⓷

 \:\:

⟮ Putting n = d + 2 from ⓶ to ⓷ ⟯

 \:\:

: ➜ 9n - 7d = 32

 \:\:

: ➜ 9(d + 2) - 7d = 32

 \:\:

: ➜ 9d + 18 - 7d = 32

 \:\:

: ➜ 2d = 32 - 18

 \:\:

: ➜ 2d = 14

 \:\:

: ➜  \sf d = \dfrac { 14 } { 2 }

 \:\:

: ➜ d = 7 ⚊⚊⚊⚊ ⓸

 \:\:

Hence the denominator is 7

 \:\:

⟮ Putting d = 7 from ⓸ to ⓶ ⟯

 \:\:

: ➜ n = d + 2

 \:\:

: ➜ n = 7 + 2

 \:\:

: ➜ n = 9 ⚊⚊⚊⚊ ⓹

 \:\:

Hence the numerator is 9

 \:\:

⟮ Putting d = 7 from ⓸ & n = 9 from ⓹ to ⓵ ⟯

 \:\:

: : ➨  \sf \dfrac { 9} { 7}

 \:\:

 \sf Hence \: the \: rational \: number \: is \: \dfrac { 9 } { 7 }

Similar questions