Math, asked by Vish3705, 8 months ago

The numerator of fraction is 3 less than its denominator if 2 is added to both numerator and denominator then sum of refraction and original fraction is 29upon 30 find the original fraction

Answers

Answered by Anonymous
8

 \large\bf\underline{Correct\: Question:-}

The numerator of fraction is 3 less than its denominator if 2 is added to both numerator and denominator then sum of refraction and original fraction is 29/20 find the original fraction.

━━━━━━━━━━━━━━━━━━━━━━━

 \large\bf\underline{Given:-}

  • Numerator of fraction is 3 less than it's denominator
  • If 2 is added to both numerator and denominator then sum of fraction and original fraction is 29/20

 \large\bf\underline {To \: find:-}

  • original fraction

 \huge\bf\underline{Solution:-}

 \begin{cases} \tt \: let \: the \:denominator \: be \: x \\  \tt \: then \: numerator \:  =( x - 3) \end{cases}

  • Fraction = x-3/x

 \blacktriangleright \:  \underbrace{ \text{According to question}}

If 2 is added to both numerator and denominator then sum of fraction and original fraction is 29/20.

Adding 2 to both numerator and denominator then fraction = x-3+2/x +2 = x-1/x + 2

 \small \rightarrowtail \tt \frac{x - 3}{x}  +  \frac{x - 1}{x + 2}  =  \frac{29}{20}  \\  \\  \small \rightarrowtail \tt \frac{(x + 2)(x - 3) +x (x - 1)}{x(x + 2)}  =  \frac{29}{20}  \\  \\  \small \rightarrowtail \tt  \frac{x(x - 3) + 2(x - 3) +  {x}^{2} - x }{ {x}^{2} + 2x }  =  \frac{29}{20}  \\  \\  \small \rightarrowtail \tt \frac{ {x}^{2} - 3x + 2x - 6 +  {x}^{2}  - x }{ {x}^{2} + 2x }  =  \frac{29}{20}  \\  \\  \small \rightarrowtail \tt \:20( 2 {x}^{2}  - 2x - 6) = 29( {x}^{2}  + 2x) \\  \\  \small \rightarrowtail \tt40 {x}^{2}  - 40x - 120 = 29 {x}^{2}  + 58x

 \small \rightarrowtail \tt40 {x}^{2}  - 29 {x}^{2}  - 120 = 58x + 40x \\  \\  \small \rightarrowtail \tt11 {x}^{2}  - 120 = 98x \\  \\  \small \rightarrowtail \tt11 {x}^{2}  - 98x - 120 \\  \\  \small \rightarrowtail \tt {11x}^{2}  - 110x  +  12x - 120 \\  \\ \small \rightarrowtail \tt \: 11x(x - 10)  + 12(x - 10) \\  \\ \small \rightarrowtail \tt \:(11x  +  12)(x - 10) \\  \\ \small \rightarrowtail \tt \:x =  \frac{ - 12}{11}  \: or \: x = 10

So, we will take x = 10 because x is denominator and denominator is always greater then 0.

  • So x = 10

Now,

  • ✝️ Numerator x - 3 = 10 - 3 = 7
  • Denominator x = 10

So,

  • »★ Original Fraction = 7/10
Answered by Anonymous
3

Correct Question:

The numerator of fraction is 3 less than its denominator. If 2 is added to both numerator and denominator then sum of refraction and original fraction is 29 upon 20. Find the original fraction.

_____________________________________

Answer:-

\sf{The \ original \ fraction \ is \ \frac{7}{10}}

Given:

  • The numerator of fraction is 3 less than its denominator.

  • If 2 is added to both numerator and denominator then sum of refraction and original fraction is 29 upon 20.

To find:

  • The fraction.

Solution:

\sf{Let \ the \ denominator \ of \ the \ fraction \ be \ x.}

\sf{According \ to \ the \ first \ condition.}

\sf{\implies{Numerator=x-3}}

\sf{Original \ fraction=\frac{x-3}{x}}

\sf{Refraction=\frac{x-1}{x+2}}

\sf{According \ to \ the \ second \ condition.}

\sf{\frac{x-3}{x}+\frac{x-1}{x+2}=\frac{29}{30}}

\sf{\therefore{\frac{(x-3)(x+2)+(x-1)(x)}{(x)(x+2)}=\frac{29}{20}}}

\sf{\therefore{\frac{x^{2}+-x+6+x^{2}-x}{x^{2}+2x}=\frac{29}{20}}}

\sf{\therefore{20(2x^{2}-2x+6)=29(x^{2}+2x)}}

\sf{\therefore{40x^{2}-40x+120=29x^{2}+58x}}

\sf{\therefore{40x^{2}-29x^{2}-40x-58x+120=0}}

\sf{\therefore{11x^{2}-98x+120=0}}

\sf{\therefore{11x-110x+12x+120=0}}

\sf{\therefore{11x(x-10)+12(x-10)=0}}

\sf{\therefore{(x-10)(11x+12)=0}}

\sf{\therefore{(x=10 \ or \ \frac{-12}{11}}}

\sf{But \ x \ is \ denominator \ so \ x \ can't}

\sf{be \ smaller \ than \ zero.}

\sf{\therefore{x=10}}

\sf{Fraction=\frac{x-3}{x}=\frac{10-3}{10}}

\sf{\therefore{Original \ fraction=\frac{7}{10}}}

\sf\purple{\tt{\therefore{The \ original \ fraction \ is \ \frac{7}{10}.}}}

Similar questions