Math, asked by vbhupendra750, 2 months ago

the numerator of the fraction is less than the denominator. If both the numerator & denominator are increased by 2. the new fraction becomes 6/7. find the original fraction​

Answers

Answered by 12thpáìn
6

Case (1)

  • Numerator is 3 less than the denominator

Case (2)

  • If both numerator & denominator are increased by 2 then fraction become 6/7.

Let the numerator & denominator be x & y .

 \sf{ \:  \:  \:  \:  \:  \implies{x-3 = y ~~~~~~~—————(1)}}

\\ \sf{ \:  \:  \:  \:  \:  \implies{ \dfrac{x + 2}{y + 2}  =  \dfrac{6}{7}  ~~~~~~~ \bf—————(2)}}\\

On Solving Equ.(1)

\\ \sf{ \:  \:  \:  \:  \:  \implies{x = y +  3 }}\\

Substituting the value of x in Equ.2

\sf{ \:  \:  \:  \:  \:  \implies{ \dfrac{y + 3 + 2}{y + 2}  =  \dfrac{6}{7}  }}

\sf{ \:  \:  \:  \:  \:  \implies{ \dfrac{y + 5}{y + 2}  =  \dfrac{6}{7}  }}

\sf{ \:  \:  \:  \:  \:  \implies{7( y + 5) = 6(y + 2)   }}

\sf{ \:  \:  \:  \:  \:  \implies{7y+ 35 = 6y +  12  }}

\sf{ \:  \:  \:  \:  \:  \implies{7y - 6y =    12 - 35  }}

\sf{ \:  \:  \:  \:  \:  \implies{y =    - 23  }} \\

Putting y in Equ.(1)

\sf{ \:  \:  \:  \:  \:  \implies{x-3 =  - 23}}

\sf{ \:  \:  \:  \:  \:  \implies{x =  - 23 + 3}}

\sf{ \:  \:  \:  \:  \:  \implies{x =   - 20}} \\  \\

\boxed{ \mathbb{The ~~Original ~~fraction~~\bf is =\dfrac{x}{y}={-20}{-3} =\dfrac{20}{{23}} }}

Answered by rosoni28
8

\huge\fbox \red{A}\fbox \green{N}\fbox \purple{S}\fbox \orange{W}\fbox \red{E}\fbox \blue{R}

Cᴀsᴇ::-1

  • Numerator is 3 less than the denominator.

Cᴀsᴇ::-2

  • If both numerator & denominator are increased by 2 then fraction become 6/7.

Let the numerator & denominator be x & y .

\tt{ \: \: \: \: \: \implies{x-3 = y ~~~~~~~—————(1)}}

\begin{gathered}\\ \tt{ \: \: \: \: \: \implies{ \dfrac{x + 2}{y + 2} = \dfrac{6}{7} ~~~~~~~ \tt—————(2)}}\\\end{gathered}

  • On Solving Equ.(1)

\begin{gathered}\\ \tt{ \: \: \: \: \: \implies{x = y + 3 }}\\\end{gathered}

  • Substituting the value of x in Equ.2

\tt{ \: \: \: \: \: \implies{ \dfrac{y + 3 + 2}{y + 2} = \dfrac{6}{7} }}

\tt{ \: \: \: \: \: \implies{ \dfrac{y + 5}{y + 2} = \dfrac{6}{7} }}

\tt{ \: \: \: \: \: \implies{7( y + 5) = 6(y + 2) }}

\tt{ \: \: \: \: \: \implies{7y+ 35 = 6y + 12 }}

 \tt{ \: \: \: \: \: \implies{7y - 6y = 12 - 35 }}

\begin{gathered}\tt{ \: \: \: \: \: \implies{y = - 23 }} \\ \end{gathered}

  • Putting y in Equ.(1)

\tt{ \: \: \: \: \: \implies{x-3 = - 23}}

\tt{ \: \: \: \: \: \implies{x = - 23 + 3}}

\begin{gathered}\tt{ \: \: \: \: \: \implies{x = - 20}} \\ \\ \end{gathered}

\boxed{ \mathscr{The ~~Original ~~fraction~~\bf is =\dfrac{x}{y}={-20}{-3} =\dfrac{20}{{23}} }}

Similar questions