Math, asked by Brainly212, 16 days ago

The observations 1,2,3,...,n are multiplied respectively by 1, 2, 3, ...., n, find the mean.

I'll report your wrong answer to Headquarters of Brainly So be careful before answering this Question

50 points worth it!!​

Answers

Answered by user0888
12

\Large\textrm{Solution}

\textbf{- Arithmetic Mean}

\boxed{\rm{(A.M.)=\dfrac{\displaystyle\sum^{n}_{i=1}x_{i}}{n}}}

\;

We know,

\rm{x_{i}=i^{2}}

\;\;

Now, let's recall the sum of the first \rm{n} perfect squares.

\boxed{\rm\sum^{n}_{k=1}k^{2}=\dfrac{n(n+1)(2n+1)}{6}}

\;

Hence,

\rm{(A.M.)=\dfrac{n(n+1)(2n+1)}{6n}}

\;

\rm{\therefore(A.M.)=\dfrac{(n+1)(2n+1)}{6}}

\;

\Large\textrm{Learn More}

\textbf{- Formulae}

\textbf{\underline{The Sum of the First n Natural Numbers}}

\boxed{\rm\displaystyle\sum^{n}_{k=1}k=\dfrac{n(n+1)}{2}}

\;

\textbf{\underline{The Sum of the First n Prefect Squares}}

Here I will explain how to obtain the sum of the first \rm n perfect squares.

\;

We consider a sum of alternating signs.

We know,

\rm (x+1)^{3}-x^{3}=3x^{2}+3x+1

\;\boxed{\begin{aligned}2^{3}-1^{3}&=3\cdot1^{2}+3\cdot1+1\\\\3^{3}-2^{3}&=3\cdot2^{2}+3\cdot2+1\\\\4^{3}-3^{3}&=3\cdot3^{2}+3\cdot3+1\\\vdots\\\\(n+1)^{3}-n^{3}&=3n^{2}+3n+1\end{aligned}}

The sum on LHS: \rm (n+1)^{3}-1^{3}

\;

The sum on RHS: -

\;\rm\displaystyle3\cdot\sum^{n}_{k=1}k^{2}+3\cdot\sum^{n}_{k=1}k+\sum^{n}_{k=1}1

\rm=\displaystyle3\cdot\sum^{n}_{k=1}k^{2}+3\cdot\dfrac{n(n+1)}{2}+n

\;

LHS equals RHS.

\rm (n+1)^{3}-1^{3}=\displaystyle3\cdot\sum^{n}_{k=1}k^{2}+3\cdot\dfrac{n(n+1)}{2}+n

\;

\rm\displaystyle3\cdot\sum^{n}_{k=1}k^{2}=n^{3}+3n^{2}+3n-3\cdot\dfrac{n(n+1)}{2}-n

\;

\rm\displaystyle3\cdot\sum^{n}_{k=1}k^{2}=\dfrac{1}{2}\left\{2n^{3}+6n^{2}+6n-3\cdot n(n+1)-2n\right\}

\;

\rm\displaystyle3\cdot\sum^{n}_{k=1}k^{2}=\dfrac{1}{2}(2n^{3}+6n^{2}+6n-3n^{2}-3n-2n)

\;\;

\rm\displaystyle3\cdot\sum^{n}_{k=1}k^{2}=\dfrac{1}{2}(2n^{3}+3n^{2}+n)

\;

\rm\displaystyle3\cdot\sum^{n}_{k=1}k^{2}=\dfrac{n(n+1)(2n+1)}{2}

\;

\rm\therefore\displaystyle\sum^{n}_{k=1}k^{2}=\dfrac{n(n+1)(2n+1)}{6}

Hence shown.

Similar questions