The Oceanic crust mainly consists of
Answers
Answer:
it mainly consists of sea water
HOPE IT MAY HELP YOU
Answer:
Explanation:
Oceanic crust, the outermost layer of Earth’s lithosphere that is found under the oceans and formed at spreading centres on oceanic ridges, which occur at divergent plate boundaries.
A cross section of Earth's outer layers, from the crust through the lower mantle.
A cross section of Earth's outer layers, from the crust through the lower mantle
Oceanic crust is about 6 km (4 miles) thick. It is composed of several layers, not including the overlying sediment. The topmost layer, about 500 metres (1,650 feet) thick, includes lavas made of basalt (that is, rock material consisting largely of plagioclase [feldspar] and pyroxene). Oceanic crust differs from continental crust in several ways: it is thinner, denser, younger, and of different chemical composition. Like continental crust, however, oceanic crust is destroyed in subduction zones.
The lavas are generally of two types: pillow lavas and sheet flows. Pillow lavas appear to be shaped exactly as the name implies—like large overstuffed pillows about 1 metre (3 feet) in cross section and 1 to several metres long. They commonly form small hills tens of metres high at the spreading centres. Sheet flows have the appearance of wrinkled bed sheets. They commonly are thin (only about 10 cm [4 inches] thick) and cover a broader area than pillow lavas. There is evidence that sheet flows are erupted at higher temperatures than those of the pillow variety. On the East Pacific Rise at 8° S latitude, a series of sheet flow eruptions (possibly since the mid-1960s) have covered more than 220 square km (85 square miles) of seafloor to an average depth of 70 metres (230 feet)
Below the lava is a layer composed of feeder, or sheeted, dikes that measures more than 1 km (0.6 mile) thick. Dikes are fractures that serve as the plumbing system for transporting magmas (molten rock material) to the seafloor to produce lavas. They are about 1 metre (3 feet) wide, subvertical, and elongate along the trend of the spreading centre where they formed, and they abut one another’s sides—hence the term sheeted. These dikes also are of basaltic composition. There are two layers below the dikes totaling about 4.5 km (3 miles) in thickness. Both of these include gabbros, which are essentially basalts with coarser mineral grains. These gabbro layers are thought to represent the magma chambers, or pockets of lava, that ultimately erupt on the seafloor. The upper gabbro layer is isotropic (uniform) in structure. In some places this layer includes pods of plagiogranite, a differentiated rock richer in silica than gabbro. The lower gabbro layer has a stratified structure and evidently represents the floor or sides of the magma chamber. This layered structure is called cumulate, meaning that the layers (which measure up to several metres thick) result from the sedimentation of minerals out of the liquid magma. The layers in the cumulate gabbro have less silica but are richer in iron and magnesium than the upper portions of the crust. Olivine, an iron-magnesium silicate, is a common mineral in the lower gabbro layer.