Math, asked by ajitmodak8830, 1 year ago

The odds in favour of an event is 2:3 and the odds against the another event event is 3:7.Then find the probability that one of the ev

Answers

Answered by sprao534
29
Please see the attachment
Attachments:
Answered by sanjeevk28012
10

Given :

The odds in favour of event = 2 : 3

The odds against of another event = 3 : 7

To Find :

The probability that one of the event

Solution :

As , Odds in favour of event = P ( E_1 ) = 2 : 5 = \dfrac{2}{5}

So, Odds against of event =  P ( E_1' ) = 1 - \dfrac{2}{5}  

                                                             = \dfrac{3}{5}

Again

odds against of another event =  P ( E_2' ) = 3 : 10  = \dfrac{3}{10}

So,   Odds in favour of event = P ( E_2  ) = 1 - \dfrac{3}{10}

                                                              = \dfrac{7}{10}

Now

The probability that one of the event = P [ ( E_1 (\cap ) E_2' )   U (

                                                             = P ( E_1 ) . P ( E_2' ) +  P (

                                                             = \dfrac{2}{5}  ×  \dfrac{3}{10}   +   \dfrac{3}{5}  × \dfrac{7}{10}

                                                             = \dfrac{6}{50}  +  \dfrac{21}{50}

                                                             = \dfrac{27}{50}

Hence, The probability that one of the event is \dfrac{27}{50}  . Answer

Similar questions