the
of P ( x ) = x²-x²+x+1, then
then find
value of P(1) + P(-)
2
Answers
Answered by
0
Answer:
- hii. jghiolnvgfddjkppkjhu
Answered by
5
- Given the polynomial p(x)=x
- 3
- −x
- 2
- +x+1
- \text{we have to find the value of }\frac{1}{2}(p(-1)+p(1))we have to find the value of
- 2
- 1
- (p(−1)+p(1))
- p(x)=x^3-x^2+x+1p(x)=x
- 3
- −x
- 2
- +x+1
- Put x=-1 and x=1
- p(-1)=(-1)^3-(-1)^2+(-1)+1=-1-1-1+1=-2p(−1)=(−1)
- 3
- −(−1)
- 2
- +(−1)+1=−1−1−1+1=−2
- p(1)=(1)^3-(1)^2+(1)+1=1-1+1+1=2p(1)=(1)
- 3
- −(1)
- 2
- +(1)+1=1−1+1+1=2
- \frac{1}{2}(p(-1)+p(1))
- 2
- 1
- (p(−1)+p(1))
- =\frac{1}{2}(-2+2)=0=
- 2
- 1
- (−2+2)=0
- \text{Hence, the value is }\frac{1}{2}(p(-1)+p(1))\text{ is 0.}Hence, the value is
- 2
- 1
- (p(−1)+p(1)) is 0.
Similar questions