Math, asked by priya123429, 9 months ago

The old sums of digits of the two digit number is 9. Also, nine times this number is twice the number the number obtained by reversing the order of the digits. Find the number.​

Answers

Answered by CrEEpycAmp
78

{\fbox{\boxed {\huge{\rm{\red{Answer}}}}}}

Step-by-step explanation:

 \rightarrow  \bold{Let \: the \: digit \: at \: tens \:  place \: be \: x. \:}   \\  \rightarrow \bold{ The \: digit \:at \:  unit \: place \: be \: y.}

────────────────────────────────

 \: \large\bold{Original \: number = 10x+y} \:

 \large\mathtt{x + y = 9 \:  \:  \: eq(1)}

 \: \large\bold{If \: the \: order \: of \: the \: digits \: are \: reversed..} \:

 \rightarrow \:  \bold{The \: digit \: at \: tens \: place \: be \: y.} \\  \rightarrow \:  \bold{And \: the \: digit \: at \: unit \: place \: be \: x.}

 \:  \large\bold{New \: no. 10y+x} \:

 \rightarrow \:  \mathtt{9(10x + y)} =  \mathtt{2(10y + x)} \\   \rightarrow \mathtt{90x + 9y = 20y + 2x} \\  \rightarrow \:  \mathtt{90x - 2x = 20y - 9y} \\  \rightarrow \mathtt{ \cancel{88x} =  \cancel{11y}} \\  \rightarrow  \:  \mathtt{8x = y} \\  \rightarrow \:   \fbox\mathtt{8x - y = 0 \:  \:  eq(2)}

  \:  \:  \: \mathtt{x +  \cancel{y}= 9} \\   \mathtt{\frac{8x -  \cancel{y} = 0} {9x = 9} } \\   \:  \:  \:  \fbox\mathtt{x =  \frac{ \cancel{9}}{ \cancel{9}} }

 \bold{Put \: x = 1 \:  \: eq(1)}

 \rightarrow \:  \mathtt{x + y = 9} \\  \:   \:  \:  \:  \:  \:  \mathtt{1 + y = 9} \\  \:  \:  \:  \:  \:  \:  \mathtt{y = 9 - 1} \\  \:  \:  \:  \:  \:  \:   \fbox\mathtt{y = 8}

 \rightarrow \:  \mathtt{Original \: no. \:  = 10x + y} \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  \mathtt{10(1) + 8} \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  \mathtt{10 + 8} \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  =  \fbox \mathtt{18}

{\boxed{\huge{\blue{\mathcal{BeBrainly}}}}}

Similar questions