Math, asked by qais7, 7 months ago

the one who will solve it perfectly will get 78 coins and I will mark it as BRAINLIEST !!!! समझ में आया क्या ​

Attachments:

Answers

Answered by gpvvsainadh
0

Answer:

let p be the number in empty block.

(3/2)^8 x (9/4)^p =(3/2)^28

=>(3/2)^8 x (3^2/2^2)^p =(3/2)^28

=>(3/2)^8 x (3/2)^2p =(3/2)^28.

=>(3/2)^(8+2p) =(3/2)^28. (formula a^m x a^n = a^(m+n)

compare both sides

8+2p=28

2p=28-8

2p=20

p=10

the number in empty box is 10.

Answered by pulakmath007
9

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

We are aware of the formula of indices that :

1.

 {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}

2.

 {  \: ({a}^{m} )}^{n}  =  {a}^{mn}

3.

 {a}^{m}  =  {a}^{n}  \:  \: implies \:  \: m = n

GIVEN

 \sf{ \:Taking \:  x  \: as \:  missing \:  term  \: }

 \displaystyle \:  { \bigg( \:   \frac{3}{2} \bigg)}^{8}  \times { \bigg( \:   \frac{9}{4} \bigg)}^{x}  = { \bigg( \:   \frac{3}{2} \bigg)}^{28}

TO DETERMINE

The value of x

EVALUATION

 \displaystyle \:  { \bigg( \:   \frac{3}{2} \bigg)}^{8}  \times { \bigg( \:   \frac{9}{4} \bigg)}^{x}  = { \bigg( \:   \frac{3}{2} \bigg)}^{28}

  \implies \: \displaystyle \:  { \bigg( \:   \frac{3}{2} \bigg)}^{8}  \times { \bigg[ \:    { \bigg( \:   \frac{3}{2} \bigg) }^{2} \bigg] }^{x}  = { \bigg( \:   \frac{3}{2} \bigg)}^{28}

  \implies \: \displaystyle \:  { \bigg( \:   \frac{3}{2} \bigg)}^{8}  \times { \bigg( \:   \frac{3}{2} \bigg)}^{2x}  = { \bigg( \:   \frac{3}{2} \bigg)}^{28}

  \implies \: \displaystyle \:  { \bigg( \:   \frac{3}{2} \bigg)}^{8 + 2x} = { \bigg( \:   \frac{3}{2} \bigg)}^{28}

 \implies \: 8 + 2x = 28

 \implies \:  2x = 20

 \implies \: x = 10

RESULT

 \sf{ \boxed{ \: The  \: missing \:  term \:  is \:  10 \: }}

Similar questions