Math, asked by Anonymous, 10 months ago

The ones digit of a 3-digit number is three times the hundreds digit and the tens
digit is four times the hundreds digit. The sum of the digits of the number is 16.
Find the number.

I will mark you as brainliest ☺️​

Answers

Answered by Anonymous
57

\bold{\underline{\underline{Assume \::}}}

Let the -

  • Hundreds digit be "x"
  • Ten's digit be "y"
  • One's digit be "z"

\bold{\underline {\underline {Solution \::}}}

The ones digit of a 3-digit number is three times the hundreds digit.

→ z = 3x

The tens digit is four times the hundreds digit.

→ y = 4x

Now,

Sum of the digits of the number is 16.

⇒ x + y + z = 16

⇒ x + 4x + 3x = 16 [From above]

⇒ 8x = 16

⇒ x = 16/8

⇒ x = 2

So,

→ z = 3(2)

→ z = 6

Similarly,

→ y = 4(2)

→ y = 8

From above calculations we have -

  • Hundred's digit = x = 2
  • Ten's digit = y = 8
  • One's digit = z = 6

So,

Number = Hundred's digit + ten's digit + one's digit

⇒ 200 + 80 + 6

⇒ 286

Number is 286.

Answered by Anonymous
64

\huge\underline\green{\sf Answer:-}

\large{\boxed{\sf Number\:Is\:286}}

\huge\underline\green{\sf Solution}

Let,

Hundred's digit be "x"

Ten's digit be "y"

One's digit be "z"

The ones digit of a 3 digit number is 3 times the hundered digit

z = 3x

The tens digit is four times the hundered digit

y = 4x

Now,

Sum of digit of number is 16 ( given )

\large{\sf x + y + z = 16}

\large{\sf x + 4x +3x = 16}

\large{\sf 8x =16}

\large{\sf x ={\frac{16}{8}}}

\large{\boxed{\sf x = 2}}

Therefore ,

\large{\sf z = 3×2}

\large{\boxed{\sf y =8}}

\large{\sf We\:Get:-}

Hundered's digit x =2

Ten's digit y = 8

One's digit z =6

\small{\boxed{\sf Number=Hundered's\:digit+ ten's\:digit+one's\:digit}}

\large\implies{\sf 200+80+6}

\large\implies{\sf 286}

\huge\red{\boxed{\sf No.\:is\:286}}

Similar questions