Math, asked by vnakerkar3310, 1 year ago

The opening of the tunnel can be modeled by the graph of the equation y=-0.18x^2+4.4x-12 where x and y are measured in feet. Find the maximum height of the tunnel.

Answers

Answered by TanurRizal
1
 \textit{Derivative}
 y= -0,18x^2+4,4x-12
\textit{Find Relative Extrema.}

 \textit{Relative Extrema}
 y'= -0,36x+4,4
 y' = 0
 0 = -0,36x+4,4
 x = \frac{440}{36}
 x = \frac{110}{9}

 y(\frac{110}{9})=-\frac{18}{100}\cdot\frac{12100}{81}+\frac{44}{10}\cdot\frac{110}{9}-12
 y(\frac{110}{9})=-\frac{242}{9}+\frac{484}{9}-12
 y(\frac{110}{9})=\frac{242}{9}-\frac{108}{9}
 y(\frac{110}{9})= \frac{134}{9}
Similar questions