Math, asked by prakashpaswan9286, 10 months ago

The opposite angle of a quadrilateral is supplementary to each other. If the difference between the pairs of opposite angles is 40° and 20°, Find the measure of the angles of the quadrilateral ​

Answers

Answered by Anonymous
120

  \large{\red{ \bf{ \underline {\underline{Answer}}}}} \\  \\  \purple{ \sf{\mapsto The \: angle \: are \: 110 \degree, \: 100 \degree, 80 \degree, \:  70 \degree}} \\  \\   \mathrm{\green{ \underline{Given}}} \\ \\ \sf{\rightsquigarrow The \:  two \:  opposite  \: angle  \: of \:  quadrilaterals}  \\ \sf {are \:  supplymentary  \: to \:  each \:  other , \: } \\  \sf{ difference \:  between \:  the \:  pairs  \: of \:  opposite}  \\ \sf{angle \:  is  \: 40 \degree  and   \: 20 \degree}\\  \\  \rm{ \blue{ \underline{To \: Find}}} \\  \\  \sf{\rightsquigarrow Measure  \: of  \: the  \: angle  \: of \:  the \:  quadrilateral}

  • According to given question

 \sf{Let \: the \: angle \: be \: abcd \: respectively} \\   \\  \sf{A + D = 180 \degree -  -  -  - (1)} \: given \\  \sf{B + C = 180 \degree}  -  -  -  - (2)\: given  \\  \\  \sf{A - D = 40 \degree -  -  -  - (3)}\: given \\  \sf{B - C = 20 \degree -  -  -  - (4)}\: given \\  \\  \sf{ \therefore \:  \: Adding \: equation \: (1) +  equation \: (3)} \\  \\  \sf{ \implies (A + D = 180 \degree) + (A - D = 40 \degree)} \\  \\  \sf{ \implies 2A = 220 \degree} \\  \\  \sf{ \implies A =  \frac{ \cancel{220 }}{ \cancel{2} }} \\  \\  \sf \purple{ \implies \purple {\underline{ \boxed {\sf{A = 110 \degree}}}}} \\  \\  \sf{Substituting \: value \: of \: A \: in \: equation \: (3)} \\  \\  \sf{ \implies 110 \degree - D = 40 \degree} \\  \\  \sf{ \implies D = 110 \degree - 40 \degree} \\  \\ \sf \purple{ \implies \purple {\underline{ \boxed {\sf{D = 70 \degree}}}}}

 \sf{ Now, \: equation \:(2) +  equation \: (4)} \\  \\  \sf{ \implies (B + C =  180 \degree)  + (B - C = 20 \degree)} \\  \\  \sf{ \implies 2B = 200 \degree} \\  \\  \sf{ \implies B =  \frac{ \cancel{200}}{ \cancel{2} }}  \\  \\  \sf{ \purple{ \implies }} \purple{ \underline{ \boxed{ \sf{B = 100 \degree}}}} \\  \\  \sf{ \therefore \:  \: Subtituting\:Value \: of \: B \: in \: equation \: (4)} \\  \\  \sf{ \implies 100 \degree  - C = 20 \degree} \\  \\  \sf{ \implies C = 100 \degree - 20 \degree } \\  \\  \sf{ \purple{ \implies }} \purple{ \underline{ \boxed{ \sf{C = 80 \degree}}}} \\  \\  \sf \purple{ \therefore \:  \:The \: angle \: are \: 110 \degree, \: 100 \degree, \: 80 \degree, \:70 \degree}

\sf{\purple{\dag\:\angle A=110\degree}}

\sf{\purple{\dag\:\angle B=100\degree}}

\sf{\purple{\dag\:\angle C=80\degree}}

\sf{\purple{\dag\:\angle D=70\degree}}

Answered by Anonymous
8

\blue{\bold{\underline{\underline{Answer:}}}}

 \:\:

 \green{\underline \bold{Given :}}

 \:\:

  • Opposite angles of a quadrilateral is supplementary.
  • Difference between pairs of opposite angles is 40° & 20°

 \:\:

 \red{\underline \bold{To \: Find:}}

 \:\:

  • Measure of angles of the quadrilateral

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

Let one one pair of opposite angle be x & y

 \:\:

So,

 \:\:

⇛ x + y = 180° --------(1)

 \:\:

⇛ x - y = 40° -----------(2)

 \:\:

 \underline{\bold{\texttt{Solving (1) \& (2) we get,}}}

 \:\:

⇛ 2x = 220

 \:\:

⇛ x = 110°

 \:\:

Hence,

 \:\:

⇛ y = 70°

 \:\:

Let other pair of opposite angles be a & b

 \:\:

So,

 \:\:

⇛ a + b = 180° ----------(3)

 \:\:

⇛ a - b = 20° -----------(4)

 \:\:

 \underline{\bold{\texttt{Solving (3) \& (4) we get,}}}

 \:\:

⇛ 2a = 200

 \:\:

⇛ a = 100°

 \:\:

Hence,

 \:\:

⇛ b = 80°

 \:\:

 \underline{\bold{\texttt{Hence angles are :}}}

  • 110°
  • 70°
  • 100°
  • 80°

\rule{200}5

Similar questions