Math, asked by ankitbhardvaj9233, 1 month ago

The Opposite angles of a parallelogram are 2x+10degree and 3x-15 degree find the measurement

Answers

Answered by sia1234567
20

 \huge\sf{answer - }

   \underline\bold{\dagger \: let \: angles\: of \: the \: parallelogram \: be - } \\   \sf\star \:  \angle \: a \\   \sf\star  \: \angle \: b \\   \sf\star \:\angle \: c \\   \sf\star \:\angle \: d

   \underline\bold{\maltese \: according \: to \: the \: question - } \\  \sf \bigstar \: opposite \: angles \: are \: equal.

 \bold{as \: angles \: are \: opposite} \\   \sf\therefore \:  \angle \: a = 2x + 10 \degree \\  \bold{and} \\  \sf\angle \: c = 3x - 15 \degree

 \underline \color{red}\bold{ \leadsto \: as \: we \: know \: opposite \: angles \: of \: a \: parallelogram \: are \: equal }

 \bold{\hookrightarrow \: 2x + 10\degree = 3x - 15 \degree} \\   \bold{\hookrightarrow \: x =   25}

  \underline\green{\maltese \:  by \: putting \: the \: value \: of \: x \: we \: get - }

\hookrightarrow\bold{\angle \: a = 2 \times 25 + 10} \\    \hookrightarrow\bold{\angle \: a = 50 + 10 = 60\degree} \\  \sf{\angle \: a =}  \fbox{60}

 \bold{\underline\color{red}\leadsto \: also \: we \: know \: that \: sum \: of \: two \: adjacent \: angles \: of \: a \: parallelogram  \: = \:  180\degree}

  \bold{\hookrightarrow \: \angle \: a +  \angle \: b = 180 \degree}

 \bold{\hookrightarrow \: 60 +  \angle \: b = 180\degree}

 \hookrightarrow \bold{ \angle \: b = 180 \degree - 60 \degree} \\    \hookrightarrow\sf{\angle \: b =}  \fbox{120}

 \sf \underline\color{blue}\maltese \: and \: as \: we \: know \: opposite \: angles \: are \: equal \:

  \blacktriangleright \bold{\angle \: a =  \angle \: c = 60 \degree} \\  \blacktriangleright \bold{\angle \: b =  \angle \: d = 120 \degree}

______________________________

\huge\sf\pink{verification - }

 \bold {\hookrightarrow \: \angle \: a +  \angle \: b +  \angle \: c +  \angle \: d = 360 \degree}

 \bold{\hookrightarrow \: (60 + 120 + 60 + 120)\degree = 360 \degree} \\ \: \sf \underline{\hookrightarrow \: 360 \degree = 360 \degree}  \red\checkmark

  \color{gold}\star\fbox{\underline{hence \: verified}}

_______________________________

@Sia1234567

Similar questions