Math, asked by StrongGirl, 8 months ago

The orthocenter of ∆ABC where vertices are A(-1, 7) B(-7, 1) C(5, -5) is ​

Attachments:

Answers

Answered by kanchikhurana
1

Answer:

please mark as brainliest............

Attachments:
Answered by BrainlyTornado
6

ANSWER:

  • The orthocentre of the triangle H = (- 3, 3)

GIVEN:

  • A = (- 1, 7), B = (-7, 1), C = (5, - 5) .

TO FIND:

  • The orthocentre of the triangle.

EXPLANATION:

\boxed{ \bold{ \large{ \gray{Slope = \dfrac{y_2 - y_1}{x_2-x_1}}}}}

 \sf A = (- 1, 7),  \ B = (-7, 1)

 \sf(x_1, \ y_1) = (- 1, 7)

 \sf(x_2, \ y_2) = (- 7, 1)

\sf Slope\ of\ AB = \dfrac{1 - 7}{-7+1}

\sf Slope\ of\ AB = \dfrac{ - 6}{-6}

\sf Slope\ of\ AB = 1

\sf Slope\ of\ AB\  \perp \ Slope\ of\ CF

\sf (Slope\ of\ AB) \times (Slope\ of\ CF) =  - 1

\sf 1 \times (Slope\ of\ CF) =  - 1

\sf  Slope\ of\ CF=  - 1

\boxed{ \bold{ \large{ \gray{y - y_1 = m(x - x_1)}}}}

 \sf C = (x_1,\ y_1) =(5, -5)

 \sf m =  Slope\ of\ CF = - 1

 \sf y + 5 =  - 1(x - 5)

 \sf  - y  -  5 = x - 5

 \sf  x  + y - 5 + 5 = 0

 \sf  x  + y = 0

  \sf x =  - y

\boxed{ \bold{ \large{ \gray{Slope = \dfrac{y_2 - y_1}{x_2-x_1}}}}}

 \sf B = (-7, 1), \ C = (5, - 5)

 \sf(x_1, \ y_1) = (- 7, 1)

 \sf(x_2, \ y_2) = (5,  - 5)

\sf Slope\ of\ BC = \dfrac{ - 5 - 1}{5  + 7}

\sf Slope\ of\ BC = \dfrac{ - 6}{12}

\sf Slope\ of\ BC = \dfrac{ - 1}{2}

\sf Slope\ of\ BC\  \perp \ Slope\ of\ AD

\sf (Slope\ of\ BC) \times(Slope\ of\ AD) =  - 1

\sf  \dfrac{ - 1}{2} \times(Slope\ of\ AD) =  - 1

\sf  Slope\ of\ AD=  2

\boxed{ \bold{ \large{ \gray{y - y_1 = m(x - x_1)}}}}

 \sf C = (x_1,\ y_1) =( - 1, 7)

 \sf m = 2

 \sf y -7 = 2(x  + 1)

 \sf y -7 = 2x  +2

 \sf 2x- y  +9 = 0

  \sf We\ know\ that \ x =  - y

 \sf 2( - y) - y  +9 = 0

 \sf - 2y - y  +9 = 0

 \sf - 3y  =  - 9

 \sf y =  3

  \sf We\ know\ that \ x =  - y

 \sf x =  - 3

HENCE THE ORTHOCENTRE H = (- 3, 3).

Attachments:
Similar questions