Math, asked by skimg84, 5 months ago

• The outer edge of a circular running track is 440 m long. If it is widened by
5 m all around, find the cost of widening it at the rate of 8 per m2.​

Answers

Answered by NewGeneEinstein
11

DIAGRAM:-

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\qbezier(2.3,0)(2.121,2.121)(0,2.3)\qbezier(-2.3,0)(-2.121,2.121)(0,2.3)\qbezier(-2.3,0)(-2.121,-2.121)(0,-2.3)\qbezier(2.3,0)(2.121,-2.121)(-0,-2.3)\qbezier(1.2,0)(1.121,1.121)(0,1.2)\qbezier(1.2,0)(1.121,-1.121)(0,-1.2)\qbezier(0,-1.2)(-1.121,-1.121)(-1.2,0)\qbezier(-1.2,0)(-1.121,1.121)(0,1.2)\put(-0,0){\vector(-1,0){2.3}}\put(0,0){\vector(0,1){1.2}}\put(-2,-0.3){$\bf r+5\:units$}\put(0.2,0.3){$\bf r\:units$}\end{picture}

Given :-

The outer edge of a circular field is 440m long

To find :-

the cost of widening it after it has widened 5m all around

Solution:-

Circumference =440m

Let

radius=r

As we know that in a Circle

\boxed{\sf Circumference =2\pi r }

  • Substitute the values

\\\qquad\quad\sf{:}\longrightarrow 2\pi r=440

\\\qquad\quad\sf{:}\longrightarrow 2\times \dfrac {22}{7}r=440

\\\qquad\quad\sf{:}\longrightarrow \dfrac {44}{7}r=440

\\\qquad\quad\sf{:}\longrightarrow r=\cancel {440}\times \dfrac {7}{\cancel {44}}

\\\qquad\quad\sf{:}\longrightarrow r=10\times 7

\\\qquad\quad\sf{:}\longrightarrow r=70m

  • if it is widened 5m all around then

New radius=r+5=70+5=75m

\\\qquad\quad\sf{:}\longrightarrow Area\: of\: inner\: circle =\pi r^2

\\\qquad\quad\sf{:}\longrightarrow Area_{(inner\;Circle)}=\dfrac {22}{7}(70)^2

\\\qquad\quad\sf{:}\longrightarrow Area_{(inner\;Circle)}=\dfrac {22}{7}\times 4900

\\\qquad\quad\sf{:}\longrightarrow Area_{(inner\;Circle)}=22\times 700

\\\qquad\quad\sf{:}\longrightarrow Area_{(inner\;Circle)}=15400m^2

  • Again

\\\qquad\quad\sf{:}\longrightarrow Area_{(outer\;Circle)}=\pi r^2

\\\qquad\quad\sf{:}\longrightarrow Area_{(outer\;Circle)}=\dfrac {22}{7}(75)^2

\\\qquad\quad\sf{:}\longrightarrow Area_{(outer\;Circle)}=\dfrac {22}{7}\times 5625

\\\qquad\quad\sf{:}\longrightarrow Area_{(outer\;Circle)}=\dfrac {123750}{7}

\\\qquad\quad\sf{:}\longrightarrow Area_{(outer\;Circle)}=17678.5m^2

  • Now

\\\qquad\quad\sf{:}\longrightarrow Area_{(Track)}=Area_{(outer\;circle)}-Area_{(inner\:circle)}

\\\qquad\quad\sf{:}\longrightarrow Area_{(Track)}=17678.5-15400

\\\qquad\quad\sf{:}\longrightarrow Area_{(Track)}=2278.5m^2

Cost of widening 1m=8

\\\qquad\quad\sf{:}\longrightarrow Cost\:of\:widening\:Track=2278.5\times 8

\\\qquad\quad\sf{:}\longrightarrow Cost\:of\:widening\:Track=18228units

\\\\\therefore\underline{\underline{\sf Cost\:of\:widening\:the\:track\:is\:18228units.}}

Formulas to remember:-

\\ \\ \star\sf Square=(side)^2 \\ \star\sf Rectangle=Length\times Breadth \\ \star\sf Triangle=\dfrac{1}{2}\times Base\times Height \\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height   \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2


Glorious31: Nice
Anonymous: Awesome!
akash725076: louser
Similar questions