The overall width in cm of several wide-screen televisions are 97.28 cm, 98 4/ 9 cm, 98 1/25 cm and 97.94 cm. Express these numbers as rational numbers in the form p / q and arrange the widths in ascending order .
Answers
Given: Overall width in cm of several wide-screen televisions are 97.28 cm, 98.4/ 9 cm, 98.1/25 cm and 97.94 cm
To find: Express these numbers as rational numbers in the form p / q and arrange the widths in ascending order.
Solution:
- So we have given the widths of the television in centimetres, so writing them in fractional form, we get:
Width = 9728/100 cm, 984/(9x10)cm, 981/(25x10) cm, 9794/100 cm
= 9728/100 cm, 984/90 cm , 981/250 cm, and 9794/100 cm
- Now making the denominator equal, we get:
= 9794/100 cm, 9728/100 cm, 984/90 cm, (981x4)/(250x4) cm
= 9794/100 cm, 9728/100 cm, 984/90 cm, 3924/1000 cm
= (9794x10)/(100x10) cm, (9728x10)/(100x10) cm, 984/90 cm, 3924/1000 cm
= 97940/1000 cm, 97280/1000 cm, 984/90 cm , 3924/1000 cm
= 97940/1000 cm, 97280/1000 cm, 3924/1000 cm, 984/90 cm
- Now making all denominators equal to 9000, we get:
= (97940x9)/(1000x9) cm, (97280x9)/(1000x9) cm, (3924x9)/(1000x9) cm, (984x100)/(90x100) cm
= 881460/9000 cm, 875520/9000 cm, 35316/9000 cm, 98400/9000 cm
Width = 881460/9000, 875520/9000, 98400/9000, 35316/9000
Answer:
So the values in ascending order are 97.94 cm, 97.28 cm, 98.4/9 cm, 98.1/25 cm