the p/q form of 0.366666 is
Answers
Answer:
I hope it will be useful for you if you like my answer please make my answer brain list and please follow me
Answer:
The form of 0.36666.....=
Step-by-step explanation:
Given recurring decimal number is 0.3666.......
To find the form of the given recurring decimal number
Recall the concept
Every recurring decimal numbers are rational numbers and hence every recurring decimal number can be written in the form , where 'p' and 'q' are integers and q ≠0
Solution:
Let x = 0.36666...... --------------------(1)
Since, there is one decimal place that is not recurring, multiplying the equation (1) by 10 we get
10x = 0.36666......×10
10x = 3.6666.......... --------------------(2)
Since, there is one recurring decimal place, multiplying the equation (2) by 10 we get
100x = 3.6666..........×10
100x = 36.666............. -----------------(3)
Subtracting (2) from equation (3)
(3) -(2) →
100x - 10x = 36.666............ - 3.6666..........
90x = 33
x = =
0.36666......=
The form of 0.36666......=
#SPJ2