Math, asked by krishnanandan0101, 8 days ago

The P^th,q^th and r^th terms of an AP are a,b,c respectively. Show that (a-b)r + (b-c)P + (c-a)q = 0.​

Attachments:

Answers

Answered by anindyaadhikari13
6

Solution:

Let us assume that the first term of the given AP be A and the common difference be d.

Therefore, we have :-

 \rm \longrightarrow A_{p} = a

 \rm \longrightarrow A_{q} = b

 \rm \longrightarrow A_{r} = c

Now, we know that :-

 \rm \longrightarrow A_{n} = a + (n - 1)d

Therefore, we have :-

 \rm \longrightarrow a = A + (p - 1)d - (i)

 \rm \longrightarrow b = A + (q - 1)d - (ii)

 \rm \longrightarrow c = A + (r - 1)d - (iii)

Subtracting (ii) from (i), we get :-

 \rm \longrightarrow (a - b) =  (p - 1)d - (q - 1)d

 \rm \longrightarrow (a - b) =  (p - 1 - q + 1)d

 \rm \longrightarrow (a - b) =  (p- q)d

 \rm \longrightarrow (a - b)r =  rd(p- q) - (iv)

Subtracting (iii) from (ii), we get :-

 \rm \longrightarrow (b - c) =  (q - 1)d - (r- 1)d

 \rm \longrightarrow (b - c) =  (q - 1 - r + 1)d

 \rm \longrightarrow (b - c) =  (q- r)d

 \rm \longrightarrow (b - c)p =  pd(q- r) - (v)

Subtracting (i) from (iii), we get :-

 \rm \longrightarrow (c - a) =  (r - 1)d - (p - 1)d

 \rm \longrightarrow (c - a) =  (r - 1 - p + 1)d

 \rm \longrightarrow (c - a) =  (r- p)d

 \rm \longrightarrow (c - a)q =  qr(r- p) - (vi)

Adding equations (iv), (v) and (vi), we get :-

 \rm \longrightarrow (a - b)r + (b - c)p + (c - a)q = rd(p - q) + pd(q - r) + qd(r - p)

 \rm \longrightarrow (a - b)r + (b - c)p + (c - a)q =d \{r(p - q) + p(q - r) + q(r - p) \}

 \rm \longrightarrow (a - b)r + (b - c)p + (c - a)q =d \{pr - qr + pq - pr + qr - pq \}

 \rm \longrightarrow (a - b)r + (b - c)p + (c - a)q =d \{ - qr + pq + qr - pq \}

 \rm \longrightarrow (a - b)r + (b - c)p + (c - a)q =d \{ + pq  - pq \}

 \rm \longrightarrow (a - b)r + (b - c)p + (c - a)q =d \times 0

 \rm \longrightarrow (a - b)r + (b - c)p + (c - a)q =0

Hence Proved..!!


anindyaadhikari13: Thanks for the brainliest ^_^
Answered by kamalrajatjoshi94
0

Answer:

Refer to the attachments for working.

Attachments:
Similar questions