Chemistry, asked by shreyasathish7703, 2 months ago

The packing fraction in two dimensional square packing structure is (R: radius of atom)
1) πR^2\(2R) × (2R)
2) π\(2R) × (2R)
3) R^2\(2R) × (2R)
4) π+3R^2)\ R×(2R)​

Answers

Answered by Nobodyxyzabc
17

Answer: option 1st…

Explanation:

Answered by caffeinated
0

The packing fraction in two-dimensional square packing structure is πR^2\(2R) × (2R).

Calculations

The diagonal for Square packing structure is 4R, (r is the radius).

Diagonal = \sqrt{L^{2} + L^{2} )} =\sqrt{2L}

Using the above 2 statements,

  4R =\sqrt{2L}

= \sqrt{2L} = 4R

 = L = 4R/\sqrt{2}

Total Area = L^{2}

                 = (4R/\sqrt{2} )^{2}

                 = 8R²

Number of spheres inside square = 1 + 4(1/4)

                                                        =   1 + 1

                                                        =    2

Area of sphere = πR²

Area of 2 spheres = 2 x πR²

Packing fraction = Area of 2 spheres/ Total area

                           =  (2 x πR²) / 8R²

                           =  πR² / 4R²

                           = πR² / (2R x 2R)

Similar questions