The paint in a container is sufficient to paint an area equal to 18.56cm how many bricks of dimensions 12cm*10cm*8cm can be painted by this paint
Answers
Therefore the number of brick can be painted by this paint container≈313.
Step-by-step explanation:
Given, the paint in a container is sufficient to paint an area equal to 18.56 m² = 185600 ²cm
The dimensions of one brick is 12 cm× 10 cm × 8 cm
Surface area of a cuboid=2(l×b+l×h+b×h)
The surface area of a brick is = 2(12×10+12×8+10×8) cm²
=592 cm²
Therefore the number of brick can be painted by this paint container=(185600÷592) =313.51≈313.
L - 12 cm
L - 12 cmB - 10 cm
L - 12 cmB - 10 cmH - 8 cm
L - 12 cmB - 10 cmH - 8 cmTSA of bricks - 2( lb+ bh+hl)
L - 12 cmB - 10 cmH - 8 cmTSA of bricks - 2( lb+ bh+hl)2(12×10 + 10×8 + 8×12)
L - 12 cmB - 10 cmH - 8 cmTSA of bricks - 2( lb+ bh+hl)2(12×10 + 10×8 + 8×12)2(120+80+96)
L - 12 cmB - 10 cmH - 8 cmTSA of bricks - 2( lb+ bh+hl)2(12×10 + 10×8 + 8×12)2(120+80+96)2×296
L - 12 cmB - 10 cmH - 8 cmTSA of bricks - 2( lb+ bh+hl)2(12×10 + 10×8 + 8×12)2(120+80+96)2×296592 cm²
L - 12 cmB - 10 cmH - 8 cmTSA of bricks - 2( lb+ bh+hl)2(12×10 + 10×8 + 8×12)2(120+80+96)2×296592 cm² no. of bricks - TSA of bricks ÷ total paint
L - 12 cmB - 10 cmH - 8 cmTSA of bricks - 2( lb+ bh+hl)2(12×10 + 10×8 + 8×12)2(120+80+96)2×296592 cm² no. of bricks - TSA of bricks ÷ total paint 592÷1856×100
L - 12 cmB - 10 cmH - 8 cmTSA of bricks - 2( lb+ bh+hl)2(12×10 + 10×8 + 8×12)2(120+80+96)2×296592 cm² no. of bricks - TSA of bricks ÷ total paint 592÷1856×100592÷ 185600
L - 12 cmB - 10 cmH - 8 cmTSA of bricks - 2( lb+ bh+hl)2(12×10 + 10×8 + 8×12)2(120+80+96)2×296592 cm² no. of bricks - TSA of bricks ÷ total paint 592÷1856×100592÷ 185600313•51
L - 12 cmB - 10 cmH - 8 cmTSA of bricks - 2( lb+ bh+hl)2(12×10 + 10×8 + 8×12)2(120+80+96)2×296592 cm² no. of bricks - TSA of bricks ÷ total paint 592÷1856×100592÷ 185600313•51—> 313