Math, asked by Anonymous, 1 month ago

the pair 3x+4y+2=0 and 4x=5y-13 of linear equations has ;
pura solve karo ​

Answers

Answered by XxRajeshChaubeyXx
1

Answer:

are bhai Abhi 2 Sal hi to hue hain bane

1 Sal to Vahi Kiya

per ab nahin karta

Answered by StutiyelveO
1

The given pair of equations can be written as:

The given pair of equations can be written as:\(3x+4y+2=0\) and \(4x-5y+13=0\)

The given pair of equations can be written as:\(3x+4y+2=0\) and \(4x-5y+13=0\)Here, \(a_1=3,b_1=4,c_1=2\) and \(a_2=4,b_2=-5,c_2=13\)

The given pair of equations can be written as:\(3x+4y+2=0\) and \(4x-5y+13=0\)Here, \(a_1=3,b_1=4,c_1=2\) and \(a_2=4,b_2=-5,c_2=13\)Now, \(\frac{a_1}{a_2}=\frac{3}{4}\)

The given pair of equations can be written as:\(3x+4y+2=0\) and \(4x-5y+13=0\)Here, \(a_1=3,b_1=4,c_1=2\) and \(a_2=4,b_2=-5,c_2=13\)Now, \(\frac{a_1}{a_2}=\frac{3}{4}\)\(\frac{b_1}{b_2}=-\frac{4}{5}\)

The given pair of equations can be written as:\(3x+4y+2=0\) and \(4x-5y+13=0\)Here, \(a_1=3,b_1=4,c_1=2\) and \(a_2=4,b_2=-5,c_2=13\)Now, \(\frac{a_1}{a_2}=\frac{3}{4}\)\(\frac{b_1}{b_2}=-\frac{4}{5}\)\(\frac{c_1}{c_2}=\frac{2}{13}\)

The given pair of equations can be written as:\(3x+4y+2=0\) and \(4x-5y+13=0\)Here, \(a_1=3,b_1=4,c_1=2\) and \(a_2=4,b_2=-5,c_2=13\)Now, \(\frac{a_1}{a_2}=\frac{3}{4}\)\(\frac{b_1}{b_2}=-\frac{4}{5}\)\(\frac{c_1}{c_2}=\frac{2}{13}\)As \(\frac{a_1}{a_2}\neq\frac{b_1}{b_2}\neq\frac{c_1}{c_2}\)

The given pair of equations can be written as:\(3x+4y+2=0\) and \(4x-5y+13=0\)Here, \(a_1=3,b_1=4,c_1=2\) and \(a_2=4,b_2=-5,c_2=13\)Now, \(\frac{a_1}{a_2}=\frac{3}{4}\)\(\frac{b_1}{b_2}=-\frac{4}{5}\)\(\frac{c_1}{c_2}=\frac{2}{13}\)As \(\frac{a_1}{a_2}\neq\frac{b_1}{b_2}\neq\frac{c_1}{c_2}\)Thus, the pair of equations has a unique solution.

Hey parteek ji i hope it will helpful for u

BTW GN AND SD

Do u use in.sta

Similar questions