the pair 3x+4y+2=0 and 4x=5y-13 of linear equations has ;
pura solve karo
Answers
Answer:
are bhai Abhi 2 Sal hi to hue hain bane
1 Sal to Vahi Kiya
per ab nahin karta
The given pair of equations can be written as:
The given pair of equations can be written as:\(3x+4y+2=0\) and \(4x-5y+13=0\)
The given pair of equations can be written as:\(3x+4y+2=0\) and \(4x-5y+13=0\)Here, \(a_1=3,b_1=4,c_1=2\) and \(a_2=4,b_2=-5,c_2=13\)
The given pair of equations can be written as:\(3x+4y+2=0\) and \(4x-5y+13=0\)Here, \(a_1=3,b_1=4,c_1=2\) and \(a_2=4,b_2=-5,c_2=13\)Now, \(\frac{a_1}{a_2}=\frac{3}{4}\)
The given pair of equations can be written as:\(3x+4y+2=0\) and \(4x-5y+13=0\)Here, \(a_1=3,b_1=4,c_1=2\) and \(a_2=4,b_2=-5,c_2=13\)Now, \(\frac{a_1}{a_2}=\frac{3}{4}\)\(\frac{b_1}{b_2}=-\frac{4}{5}\)
The given pair of equations can be written as:\(3x+4y+2=0\) and \(4x-5y+13=0\)Here, \(a_1=3,b_1=4,c_1=2\) and \(a_2=4,b_2=-5,c_2=13\)Now, \(\frac{a_1}{a_2}=\frac{3}{4}\)\(\frac{b_1}{b_2}=-\frac{4}{5}\)\(\frac{c_1}{c_2}=\frac{2}{13}\)
The given pair of equations can be written as:\(3x+4y+2=0\) and \(4x-5y+13=0\)Here, \(a_1=3,b_1=4,c_1=2\) and \(a_2=4,b_2=-5,c_2=13\)Now, \(\frac{a_1}{a_2}=\frac{3}{4}\)\(\frac{b_1}{b_2}=-\frac{4}{5}\)\(\frac{c_1}{c_2}=\frac{2}{13}\)As \(\frac{a_1}{a_2}\neq\frac{b_1}{b_2}\neq\frac{c_1}{c_2}\)
The given pair of equations can be written as:\(3x+4y+2=0\) and \(4x-5y+13=0\)Here, \(a_1=3,b_1=4,c_1=2\) and \(a_2=4,b_2=-5,c_2=13\)Now, \(\frac{a_1}{a_2}=\frac{3}{4}\)\(\frac{b_1}{b_2}=-\frac{4}{5}\)\(\frac{c_1}{c_2}=\frac{2}{13}\)As \(\frac{a_1}{a_2}\neq\frac{b_1}{b_2}\neq\frac{c_1}{c_2}\)Thus, the pair of equations has a unique solution.
Hey parteek ji i hope it will helpful for u
BTW GN AND SD
Do u use in.sta