Math, asked by manish836266, 2 months ago

the pair of equations 2x-5y+4=0 and 2x+y-8=0​

Answers

Answered by BrainlyTwinklingstar
5

Answer

\sf \dashrightarrow 2x - 5y + 4 = 0 \: \: --- (i)

\sf \dashrightarrow 2x + y - 8 = 0 \: \: --- (ii)

By first equation,

\sf \dashrightarrow 2x - 5y + 4 = 0

\sf \dashrightarrow 2x - 5y = -4

\sf \dashrightarrow 2x = -4 + 5y

\sf \dashrightarrow x = \dfrac{-4 + 5y}{2}

Now, we can find the value of y by second equation.

\sf \dashrightarrow 2x + y - 8 = 0

\sf \dashrightarrow 2x + y = -8

\sf \dashrightarrow 2 \bigg( \dfrac{-4 + 5y}{2} \bigg) + y = -8

\sf \dashrightarrow \dfrac{-8 + 10y}{2} + y = -8

\sf \dashrightarrow \dfrac{-8 + 10y + 2y}{2} = -8

\sf \dashrightarrow \dfrac{-8 + 12y}{2} = -8

\sf \dashrightarrow -8 + 12y = -8 \times 2

\sf \dashrightarrow -8 + 12y = -16

\sf \dashrightarrow 12y = -16 + 8

\sf \dashrightarrow 12y = -8

\sf \dashrightarrow y = \dfrac{-8}{12}

\sf \dashrightarrow y = \dfrac{-2}{3}

Now, we can find the value of x by first equation.

\sf \dashrightarrow 2x - 5y + 4 = 0

\sf \dashrightarrow 2x - 5y = -4

\sf \dashrightarrow 2x - 5 \bigg( \dfrac{-2}{3} \bigg) = -4

\sf \dashrightarrow 2x - \bigg(\dfrac{-10}{3} \bigg) = -4

\sf \dashrightarrow \dfrac{6x - (-10)}{3} = -4

\sf \dashrightarrow \dfrac{6x + 10}{3} = -4

\sf \dashrightarrow 6x + 10 = -4 \times 3

\sf \dashrightarrow 6x + 10 = -12

\sf \dashrightarrow 6x = -12 - 10

\sf \dashrightarrow 6x = -22

\sf \dashrightarrow x = \dfrac{-22}{6}

\sf \dashrightarrow x = \dfrac{-11}{3}

Hence, the values of x and y are \sf \dfrac{-11}{3} and \sf \dfrac{-2}{3} respectively.

Similar questions