Math, asked by debaduttakhadanga, 8 months ago

the pair of equations 3x + 5y = 3 and 9x + ky = 8 have no solution if k

Answers

Answered by pulakmath007
9

\huge\boxed{\underline{\underline{\green{Solution}}}} </p><p>

 \displaystyle \:  \longmapsto \:  \: FORMULA TO BE IMPLEMENTED :

A pair of Straight Lines

 \displaystyle \: a_1x+b_1y+c_1=0   \: and \:  \: a_2x+b_2y+c_2=0

is said to have no solution if  \displaystyle \:  \:  \frac{a_1}{a_2}   = \frac{b_1}{b_2}

 \displaystyle \:  \longmapsto \:  \: CALCULATION :

Given pair of linear equations

3x +5y = 3  \:  \: and  \:  \: 9x + ky =8

Comparing with

 \displaystyle \: a_1x+b_1y+c_1=0   \: and \:  \: a_2x+b_2y+c_2=0

We get

 \displaystyle \: a_1 = 3 \:   , \: b_1 =  5 \:    ,  c_1= - 3\: and \:  \: a_2 = 9 \:    ,  \:  b_2 = k\:  ,   \:  \: c_2= - 8

So

 \displaystyle \:  \:  \frac{a_1}{a_2}   = \frac{b_1}{b_2}  \: gives

 \displaystyle \:  \:   \frac{3}{5}  =  \frac{9}{k}

  \implies \: \displaystyle \:  k = 15

RESULT

Hence the required value of k is 15

Similar questions