Math, asked by sarthakvyavhare53, 11 months ago

The pair of equations 9x + 4y= 9 and 7x + Ky = 5 has no solution then, K=​

Answers

Answered by amitkumar44481
18

AnsWer :

k = 28/9.

Solution :

Condition have, ( No solution )

  • a1 /a2 = b1 / b2 ≠ c1 /c2.

A/Q,

  \tt\dagger  \:  \:  \:  \:  \: 9x + 4y= 9. \:  \:  \:  \:  \:-(1)

  \tt\dagger  \:  \:  \:  \:  \: 7x + Ky = 5. \:  \:  \:  \:  \:-(2)

Where as,

  • a1 = 9.
  • a2 = 7
  • b1 = 4.
  • b2 = k.
  • c1 = 9.
  • c2 = 5.

 \tt  : \implies\frac{9}{7} =  \frac{4}{k}   \neq \frac{9}{5}

Case 1.

  \tt  : \implies\frac{9}{7} =  \frac{4}{k}

\tt  : \implies \frac{9}{4 \times 7}  = k.

\tt  : \implies k =  \frac{28}{9}

Case 2.

\tt  : \implies \frac{4}{k}   \neq \frac{9}{5}

\tt  : \implies k  \neq  \frac{20}{9}

Therefore, the Value of k = 28 /9.

Some Information :

Many Solution.

  • a1 /a2 = b1 / b2 = c1 /c2.

No Solution.

  • a1 /a2 = b1 / b2 ≠ c1 /c2.

Unique Solution.

  • a1 /a2 ≠ b1 / b2.
Answered by vedhik46
0

Answer:

Given equation have no solution if

à/á=b^1/b^2=\c^1lc^2

9/7=4/k=/9/5

9/7=4/k

k=28/9

Similar questions