Math, asked by ankitverma123456com, 11 months ago

The parallel side of a Trapezium are 25 and 13 cm its non parallel sides are equal each being begin 10 cm find the area of trapezium​

Answers

Answered by dplincsv
1

Step-by-step explanation:

Given:

ABCD is a isosceles trapezium.

Two parallel bases AB=25cm and CD = 13 cm

Equal sides = AD= BC = 10cm

Let Distance between two parallel sides = DE = CF = h cm

Let AE = FB = x cm

AB = 25cm

=> AE+EF+FB=25cm

=> x + DC + x = 25cm

=> 2x + 13cm = 25 cm

=> 2x = 25 cm - 13 cm

=> 2x = 12 cm

=> x = 12/2

=> x = 6 cm

Now ,

i) In ∆AED ,

<AED = 90°

AD = 10cm ,

BD = h cm,

AE = x cm = 6 cm

By Pythagoras theorem:

DE² = AD²-AE²

=> h² = 10²-x²

=> h² = 10² - 6²

=> h² = 100 - 36

=> h² = 64

=> h = √64

=> h = 8 cm

We \: know \: that \\</p><p>\boxed {Area \: of \: a \: trapezium(A) = \frac{(AB+CD)\times h }{2}}

\implies A = \frac{(25cm+13cm)\times 8cm}{2}\\=38cm \times 4cm\\=152 \: cm^{2}

Therefore,

Area of ABCD trapezium = 152 cm²

Similar questions