Math, asked by HashTag005, 4 months ago

The parallel sides of a trapezium are 20cm and 13cm. It's non-parallel side are 10 cm each. Find the area of Trapezium. ​

Answers

Answered by ridhi0706
1

Answer:

here is your answer...hope it helps you...

Attachments:
Answered by Anonymous
9

Given :-

  • Length of Parallel side = 20 cm
  • Length of Other parallel side = 13 cm
  • Length of Non parallel side = 10 cm

To Find :-

  • Area of the trapezium.

Solution :-

Let the trapezium be ABCD.

Draw parallel line to BC ,

\dashrightarrow\:\:\rm{BC = AE = 10cm}

Draw another line which perpendicular to DC

Now,

\dashrightarrow\:\:\rm{AB = EC = 13cm}

\dashrightarrow\:\:\rm{DE = 20 -13 =7cm}

AF is perpendicular to DC it divides DF, and FE equally

So,

\dashrightarrow\:\:\rm{DF = FE = \dfrac{7}{2} }

\dashrightarrow\:\:\rm{DF = FE=3.5cm }

AFE triangle and AFD triangle are right angled triangle.

:\implies\:\rm{AF^2 + FE^2=AE^2 }

:\implies\:\rm{AF^2 + 3.5^2=10^2 }

:\implies\:\rm{AF^2 + 12.25=100 }

:\implies\:\rm{AF^2 = 100-12.25 }

:\implies\:\rm{AF^2 = 87.75 }

:\implies\:\rm{AF = \sqrt{87.75 } }

\sf:\implies \underline{\boxed{\pink{\textbf{AF=9.36}}}}\:\:\bigstar

∴ Height of AF = 9.3 cm

We know that,

\bullet\:\:\underline{\boxed{\bf{Area\:of\:trapezium = \dfrac{1}{2}\times h \times (a+b) }}}

Here,

  • h = 9.3 cm
  • a = 20 cm
  • b = 13 cm

Now,

:\implies\:\sf{\dfrac{1}{2}\times 9.3 \times (20 + 13) }

:\implies\:\sf{\dfrac{1}{2} \times 9.3 \times (33) }

:\implies\:\sf{\dfrac{33 \times 9.3}{2}  }

:\implies\:\sf{\dfrac{306.2}{2}  }

\sf:\implies \underline{\boxed{\pink{\mathfrak{1653.45\:cm^2}}}}\:\:\bigstar

∴ Area of the trapezium = 1653.45 cm²

Hope it helps uh, Sara here ! :D

Similar questions