Math, asked by charanjotsingh744, 8 months ago

The parallel sides of a trapezium are 40 cm and 20 cm. Find the area of trapezium if its non parallel sides are equal and have lenght is 26 cm.​

Answers

Answered by ampriya94
1

Answer:

area of the trapezium = 1/2 × h × (b1 + b2)

= 1/2 × 26 × (20 + 40)

= 1 × 13 × 60

= 780cm²

if you understood pls follow me

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
10

\displaystyle\large\underline{\sf\red{Given}}

✭ Parallel sides of a Trapezium are 40 cm & 20 cm

✭ Length of the non parallel sides are equal with a length of 26 cm

\displaystyle\large\underline{\sf\blue{To \ Find}}

◈ The area of the trapezium?

\displaystyle\large\underline{\sf\gray{Solution}}

So here consider a Trapezium with,

  • AB = 40 cm
  • DC = 20 cm
  • BC = 26 cm
  • AD = 26 cm

Draw a CE ⟂ AB

Which means that,

\displaystyle\sf FB = AB-AF

\displaystyle\sf FB = 40-20 = \green{20 \ cm}

━━━━━━━━━

\underline{\bigstar\:\textsf{According to the given Question :}}

In ∆FBC

\displaystyle\sf BC = FC

\displaystyle\sf \therefore ∆FBC is an Isosceles triangle

As E is the mid point of FB

\displaystyle\sf:\implies FE = \dfrac{1}{2} FB\\

\displaystyle\sf:\implies FE = \dfrac{1}{2}\times 20\\

\displaystyle\sf:\implies\green{FE = 10 \ cm}

In ∆CEF

Using pythagoras theorem,

\displaystyle\sf\twoheadrightarrow CF^2 = FE^2+CE^2\\

\displaystyle\sf\twoheadrightarrow 26^2 = 10^2+CE^2\\

\displaystyle\sf\twoheadrightarrow 676=100+CE^2\\

\displaystyle\sf\twoheadrightarrow 676-100 = CE^2\\

\displaystyle\sf\twoheadrightarrow 576 = CE^2\\

\displaystyle\sf\twoheadrightarrow \sqrt{576} = CE\\

\displaystyle\sf\twoheadrightarrow \orange{CE = 24 \ cm}

Now that we have the Height and the parallel sides we can find the area of the trapezium with the help of,

\displaystyle\underline{\boxed{\sf Ar_{Trapezium} = \dfrac{Sum \ of parallel \ sides}{2} \times Height}}

Substituting the values,

\displaystyle\sf\dashrightarrow Ar = \dfrac{40+20}{2} \times 24\\

\displaystyle\sf\dashrightarrow Ar = \dfrac{60}{2} \times 24\\

\displaystyle\sf\dashrightarrow Ar = 30\times 24\\

\displaystyle\sf\dashrightarrow\pink{Ar = 720 \ cm^2}

\sf\star\: Diagram\:\star

\setlength{\unitlength}{1 cm}\begin{picture}(20,15)\thicklines\qbezier(1,1)(1,1)(8,1)\qbezier(1,1)(1,1)(2.3,4.8)\qbezier(8,1)(8,1)(6.9,4.8)\qbezier(6.9,4.8)(6,4.8)(2.3,4.8)\qbezier(6.9,4.8)(6.9,4.8)(6,1)\qbezier(6.9,4.8)(6.9,4.8)(7,1)\put(1,0.5){\large\sf A}\put(5.9,0.5){\large\sf F}\put(7.9,0.5){\large\sf B}\put(6.9,0.5){\large\sf E}\put(6.8,5){\large\sf C}\put(2.1,5){\large\sf D}\end{picture}

━━━━━━━━━━━━━━━━━━

Similar questions