Math, asked by sayantanbose5254, 1 year ago

The parallel sides of a trapezium are in the ratio 2:3its height is 20cm and area ois 500cm.find the length of parallel sides

Answers

Answered by TasisAlwaz
2
A/Q,
let parallel side be x
then parallel sides=2x and 3x
H=20cm
area=500cm
by formula,
500=1/2(2x+3x)20
500=5x×10
5x=500/10=50
x=50/5=10cm
hence,
2x=2×10=20cm
3x=3×10=30cm
Answered by SANDHIVA1974
1

Given :

The parallel sides of a traperium are in the ratio 2:3 . and the area is 500 cm² .

Height is 20 cm .

To Find :

Length of parallel sides .

Solution :

\longmapsto\tt{Let\:one\:parallel\:side\:be=2x}

\longmapsto\tt{Let\:other\:parallel\:side\:be=3x}

Using Formula :

\longmapsto\tt\boxed{Area\:of\:Trapezium=\dfrac{1}{2}\times{(Sum\:of\:parallel\:sides)}\times{h}}

Putting Values :

\longmapsto\tt{500=\dfrac{1}{{\cancel{2}}}\times{(2x+3x)}\times{{\cancel{20}}}}

\longmapsto\tt{500=(2x+3x)\times{10}}

\longmapsto\tt{500=20x+30x}

\longmapsto\tt{500=50x}

\longmapsto\tt{x=\cancel\dfrac{500}{50}}

\longmapsto\tt\bf{x=10}

Value of x is 10 .

Therefore :

\longmapsto\tt{Length\:of\:one\:parallel\:side=2(10)}

\longmapsto\tt\bf{20\:cm}

\longmapsto\tt{Length\:of\:other\:parallel\:side=3(10)}

\longmapsto\tt\bf{30\:cm}

Similar questions