Math, asked by tigersingh2006, 10 months ago

The parallel sides of a trapezium are in the ratio 3: 7. Find their lengths, if the trapezium is of height 12 cm and has area 60 cm 2 .

Answers

Answered by tanisha67892
37

Step-by-step explanation:

hey ..... buddy

Here's your answer..

I hope it will help you

Attachments:
Answered by StarrySoul
122

 \bf \underline{ \sf \: Given : }

• Parallel sides are in the ratio 3:7

• Height = 12 cm

• Area = 60 cm^2

 \bf \underline{ \sf \: To  \: Find  : }

• The lengths of the parallel sides

 \bf \underline{ \sf Solution :}

Let the parallel sides of trapezium be 3x and 7x and denote it by a and b

{ \boxed {\large{ \purple{ \sf \: Area  \: of \:  Trapezium =  \dfrac{1}{2}(a + b) \times h }}}}

 \longrightarrow \sf 60 = \dfrac{1}{2} (3x + 7x) \times 12

 \longrightarrow \sf 60 = \dfrac{1}{2} \times 10x \times 12

 \longrightarrow \sf 60 =  \dfrac{120x}{2}

 \longrightarrow \sf 60 =  \dfrac{120x}{2}

 \longrightarrow \sf x =  \dfrac{60 \times 2}{120}

 \longrightarrow \sf x =  \dfrac{120}{120}

 \longrightarrow \sf x =  \boxed{ \sf \: 1}

Hence,

 \star \rm \: One \:  parallel  \: side  = 3x = 3 \: cm

 \star \rm \: Other \:  parallel  \: side  = 7x = 7\: cm

VeRiFiCaTiOn :

{ \boxed {\large{ \purple{ \sf \: Area  \: of \:  Trapezium =  \dfrac{1}{2}(a + b) \times h }}}}

 \longrightarrow \sf 60 =  \dfrac{1}{2} (7 + 3) \times 12

 \longrightarrow \sf 60 =  \dfrac{1}{ 2} \times 10 \times 12

 \longrightarrow \sf 60 =  \dfrac{120}{ 2}

 \longrightarrow \sf 60 = 60

Hence,Verified!!

Similar questions