Math, asked by annukajla9999, 9 months ago

the parallel sides of a trapezium is 77m and 60m and its non parallel sides are 25m find the area of trapezium ?

Answers

Answered by Anonymous
108

\red{\large\underline{\underline\mathtt{Question:}}}

The parallel sides of a trapezium is 77m and 60m and its non parallel sides are 25m . Find the area of trapezium ?

\purple{\large\underline{\underline\mathtt{Given:}}}

  • Parallel side \rightarrow p_{1} = 60m
  • Parallel side \rightarrow p_{2} = 77m
  • Non - parallel equal side = 25 m

\green{\large\underline{\underline\mathtt{We\: know:}}}

  • Pythagoras theorem

\blue{\mathrm{\boxed{\blue{h^{2} = b^{2} + p^{2}}}}}

where,

  1. h = Hypotenuse
  2. b = base
  3. p = height

  • Area of a trapezium:-

\purple{\mathrm{\boxed{\blue{\rightarrow \dfrac{1}{2} \times (sum\:of\:parallel\:sides) \times height}}}}

\blue{\large\underline{\underline\mathtt{Concept:}}}

By seeing the above figure ∆ADE , we can conclude that the figure formed is as right-angled triangle .

Since it is a right-angled triangle ,we can use the

Pythagoras theorem to find its height.

By Pythagoras theorem,

\mathrm{h^{2} = b^{2} + p^{2}}

\mathrm{\Rightarrow 25^{2} = \bigg({\dfrac{17}{2}\bigg)^{2} + p^{2}}}

\mathrm{\Rightarrow 25^{2} - \bigg({\dfrac{17}{2}\bigg)^{2} = p^{2}}}

\mathrm{\Rightarrow \sqrt{25^{2} - \bigg({\dfrac{17}{2}\bigg)^{2}} = p}}

\mathrm{\Rightarrow \sqrt{625 - \dfrac{289}{4}} = p}

\mathrm{\Rightarrow \sqrt{552.75} = p}

\mathrm{\purple{\Rightarrow 23.5= p}}

\red{{\boxed{\purple{\therefore Height = 23.5m}}}}

\red{\large\underline{\underline\mathtt{Solution:}}}

Given,

  • Parallel side \rightarrow p_{1} = 60m
  • Parallel side \rightarrow p_{2} = 77m
  • Height \rightarrow h = 23.5

By the formula ,

\mathrm{\dfrac{1}{2} \times (sum\:of\:parallel\:sides) \times height}

\mathrm{\Rightarrow \dfrac{1}{2} \times (p_{1} + p_{2}) \times h}

\mathrm{\Rightarrow \dfrac{1}{2} \times (60 + 77) \times 23.5}

\mathrm{\Rightarrow \dfrac{1}{2} \times 137 \times 23.5}

\mathrm{\Rightarrow \dfrac{1}{\cancel{2}} \times 137 \times \cancel{23.5}}

\mathrm{\Rightarrow 137 \times 11.75}

\mathrm{\purple{\Rightarrow 1610.5m^{2}}}

\red{{\boxed{\purple{\therefore Area = 1610.75 m^{2}}}}}

\blue{\large\underline{\underline\mathtt{Extra\: Information:}}}

  • Area of square = side × side
  • Area of reactangle = length × breadth
  • Area of Equilateral triangle = \dfrac{\sqrt{3}a^{2}}{4}

______________________________________

Attachments:
Answered by aviguru111
4

\pink{\large\underline{\underline\mathtt{Question:-}}}

The parallel sides of a trapezium is 77m and 60m and its non parallel sides are 25m . Find the area of trapezium ?

\purple{\large\underline{\underline\mathtt{Given:-}}}

Parallel side\rightarrow p_{1} = 60m→p

Parallel side\rightarrow p_{2} = 77m→p

Non - parallel equal side = 25 m25m

\green{\large\underline{\underline\mathtt{We\: know:}}}

Pythagoras theorem

\blue{\mathrm{\boxed{\blue{h^{2} = b^{2} + p^{2}}}}}

where,

h = Hypotenuse

b = base

p = height

Area of a trapezium:-

\purple{\mathrm{\boxed{\blue{\rightarrow \dfrac{1}{2} \times (sum\:of\:parallel\:sides) \times height}}}}

2

1

×(sumofparallelsides)×height

\blue{\large\underline{\underline\mathtt{Concept:}}}

By seeing the above figure ∆ADE , we can conclude that the figure formed is as right-angled triangle .

Since it is a right-angled triangle ,we can use the

Pythagoras theorem to find its height.

By Pythagoras theorem,

\mathrm{h^{2} = b^{2} + p^{2}}

\mathrm{\Rightarrow 25^{2} = \bigg({\dfrac{17}{2}\bigg)^{2} + p^{2}}}

\mathrm{\Rightarrow 25^{2} - \bigg({\dfrac{17}{2}\bigg)^{2} = p^{2}}}

\mathrm{\Rightarrow \sqrt{25^{2} - \bigg({\dfrac{17}{2}\bigg)^{2}} = p}}

\mathrm{\Rightarrow \sqrt{625 - \dfrac{289}{4}} = p}

\mathrm{\Rightarrow \sqrt{552.75} = p}

\mathrm{\purple{\Rightarrow 23.5= p}}

\red{{\boxed{\purple{\therefore Height = 23.5m}}}}

\red{\large\underline{\underline\mathtt{Solution:}}}

Given,

Parallel sid \rightarrow p_{1} = 60m→p

=60m

Parallel side\rightarrow p_{2} = 77m→p

=77m

Height\rightarrow h = 23.5→h=23.5

By the formula ,

\mathrm{\dfrac{1}{2} \times (sum\:of\:parallel\:sides) \times height}

\mathrm{\Rightarrow \dfrac{1}{2} \times (p_{1} + p_{2}) \times h}

\mathrm{\Rightarrow \dfrac{1}{2} \times (60 + 77) \times 23.5}

\mathrm{\Rightarrow \dfrac{1}{2} \times 137 \times 23.5}

\mathrm{\Rightarrow \dfrac{1}{\cancel{2}} \times 137 \times \cancel{23.5}}

\mathrm{\Rightarrow 137 \times 11.75}

\mathrm{\purple{\Rightarrow 1610.5m^{2}}}

\red{{\boxed{\purple{\therefore Area = 1610.75 m^{2}}}}}

\blue{\large\underline{\underline\mathtt{Extra\: Information:}}}

Area of square = side × side

Area of reactangle = length × breadth

Area of Equilateral triangle = \dfrac{\sqrt{3}a^{2}}{4}

______________________________________

Attachments:
Similar questions