Math, asked by ItzBrainlyVOID, 2 months ago

the parallel sides of a trapezium is 77m and 60m and its non parallel sides are 26m and 25m . find area​

Answers

Answered by ItzBrainlyLords
41

☞︎︎︎ Solution :

 \:

↣ Let ABCD be the trapezium :

 \:

  • AB = 60m

\:

  • CD = 77m

\:

  • BC = 26m

\:

  • AD = 25m

\:

➢ Thus, ABCD is parallelogram:

\:

★ Hence

\:

  • AB = DE = 60m

\:

  • AD = BE = 25m

\:

  • EC = DC - DE

\:

⇒ EC = 77 - 60 = 13m

\:

➢ Now , in triangle BEC

\:

➜ Let the height B from EC = h

\:

  • Using Formula :

\:

 \large \rightarrow \ \:  \boxed{ \rm \: s =  \dfrac{a + b + c}{2} }

\:

  \:  \:  \:  \:  \:  \:  \:  \:  \: \large \rm \: ⇒ \: s =  \dfrac{25 + 26 + 17}{2}

\:

  \:  \:  \:  \:  \:  \:  \:  \:  \: \large \rm \: ⇒ \: s =  \dfrac{68}{2}

\:

   \large \rm \therefore \:  \:  \underline{  \underline{{s =  {34m}{} }}}

\:

➢ Area of triangle BEC :

\:

  • Using Formula -

\:

 \large \rm \looparrowright \: area =  \sqrt{s(s - a)(s - b)(s - c)}

\:

 \large \rm⇒ \dfrac{1}{2} \times ec \times h  \:   \rightarrow \\  \\  \large \rm =  \sqrt{34(34 - 25)(34 - 26)(34 - 17)}

\:

 \large \rm : ⇒ \dfrac{1}{2} \times 17 \times h  \:   \rightarrow \\  \\  \large \rm =  \sqrt{34 \times 9 \times 8 \times 17}

\:

  \:  \:   \:  \: \: \large \rm : ⇒ \:  \dfrac{1}{2} \times 17 \times h  \:  \ \large \rm =  \sqrt{41616}

\:

  \:  \:   \:  \: \: \large \rm : ⇒ \:  \dfrac{1}{2} \times 17 \times h  \:  \ \large \rm =  204

\:

➝ On Transposing The Terms :

\:

  \:  \:   \:  \: \: \large \rm : ⇒ \: h  \:  \ \large \rm =  204 \times  \dfrac{2}{17}

\:

  \:  \:   \:  \: \: \large \rm : ⇒ \: h  \:  \ \large \rm =  \dfrac{408}{17}

\:

   \large \rm \therefore \:  \:  \underline{  \underline{{h =  {24m}{} }}}

\:

➢ Area of trapezium :

\:

 \large  \:  \:  \:  \:  \: \rm \dfrac{1}{2}  {(sum \: of \: parallel \: sides)} \times h

\:

  \: \: \large \rm : ⇒ \: area  \:  \ \large \rm  =  \dfrac{1}{2}   \times (60 + 77) \times 24

\:

  \: \: \large \rm : ⇒ \: area  \:  \ \large \rm  =  \dfrac{1}{ \cancel2}   \times 137 \times \cancel{24 } \:  \: 12

\:

   \large \rm \therefore \:  \:   \boxed{\underline{  \underline{{ \rm \: area =  {1644m {}^{2} }{} }}}}

Attachments:
Answered by llFairyHotll
8

Step-by-step explanation:

\huge\mathcal\colorbox{lavender}{{\color{b}{✿Yøur-ᎪղՏωᎬя᭄♡ツ}}}

Attachments:
Similar questions
English, 2 months ago