The particular integral a tre diferential equation( D''+ D + 1) = sin2x is
Answers
Answered by
2
Step-by-step explanation:
1/f(D)]eax = [1/f(a)]eax If f(a) = 0 then [1/f(D)]eax = x[1/f'(a)]eax If f'(a) = 0 then [1/f(D)]eax = x2[1/f''(a)]eax
[1/f(D)]xn = [f(D)]-1xn expand [f(D)]-1 and then operate.
[1/f(D2)]sin ax = [1/f(-a2)]sin ax. and [1/f(D2)]cos ax = [1/f(-a2)]cos ax. ...
[1/f(D)]eax φ(x) = eax [1/f(D+a)]φ(x)
[1/(D+a)]φ(x) = e-ax∫eaxφ(x) dx.
please mark me as brain list and thank my
Similar questions