Math, asked by kingofrajas11, 2 months ago

The PDE by eliminating the arbitrary function f from the relation z= f(y/x)​

Answers

Answered by pulakmath007
0

\displaystyle \sf  The \:  partial \:  differential \:  equation \:  is  \:  \:  \bf \: x \frac{ \partial z }{ \partial x}  + y \frac{ \partial z}{ \partial y}  = 0

Given :

\displaystyle \sf  z = f\bigg( \frac{y}{x} \bigg)

To find :

The partial differential equation eliminating the arbitrary function f from the relation

Solution :

Step 1 of 2 :

Write down the given relation

Here the given relation is

\displaystyle \sf  z = f\bigg( \frac{y}{x} \bigg)

Step 2 of 2 :

Obtain partial differential equation eliminating the arbitrary function f from the relation

\displaystyle \sf  z = f\bigg( \frac{y}{x} \bigg)

Differentiating both sides partially with respect to x we get

\displaystyle \sf   \frac{ \partial z}{ \partial x}  = f'\bigg( \frac{y}{x} \bigg) \times \bigg( -  \frac{y}{ {x}^{2} } \bigg)

\displaystyle \sf{ \implies }\frac{ \partial z}{ \partial x}  =-  \frac{y}{ {x}^{2} } f'\bigg( \frac{y}{x} \bigg)

Differentiating both sides partially with respect to y we get

\displaystyle \sf   \frac{ \partial z}{ \partial y}  = f'\bigg( \frac{y}{x} \bigg) \times \bigg(   \frac{1}{ x} \bigg)

\displaystyle \sf{ \implies }\frac{ \partial z}{ \partial y}  =  \frac{1}{ x } f'\bigg( \frac{y}{x} \bigg)

\displaystyle \sf \therefore \: x \frac{ \partial z }{ \partial x}  + y \frac{ \partial z}{ \partial y}

\displaystyle \sf   = -  \frac{xy}{ {x}^{2} } f'\bigg( \frac{y}{x} \bigg) +  \frac{y}{ x } f'\bigg( \frac{y}{x} \bigg)

\displaystyle \sf   = -  \frac{y}{ x } f'\bigg( \frac{y}{x} \bigg) +  \frac{y}{ x } f'\bigg( \frac{y}{x} \bigg)

 = 0

\displaystyle \sf  \therefore  \:   \:  The \:  partial \:  differential \:  equation \:  is  \:   \: x \frac{ \partial z }{ \partial x}  + y \frac{ \partial z}{ \partial y}  = 0

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. The complete integral of partial differential equations√p+√q=1 is

https://brainly.in/question/26048317

2. Find the complete integral of p-q=0

https://brainly.in/question/23947735

#SPJ2

Similar questions